Toplamsallık ve Çarpımsallık Özelliği Hatırlatma Grup bağımsız kaynaklar Teorem: (Toplamsallık) 2. Grup bağımsız kaynaklar Lineer direnç elemanları+Bağımsız kaynaklar 1. Grup bağımsız kaynaklar devrede, 2. grup bağımsız kaynaklar devre dışı iken devre çözülsün 2. Grup bağımsız kaynaklar devrede, 1. grup bağımsız kaynaklar devre dışı iken devre çözülsün Devrede tüm bağımsız kaynaklar varken ki çözüm Teorem: (Çarpımsallık) Lineer direnç elemanları+Bağımsız kaynaklar var iken devre çözülsün Lineer direnç elemanları+Bağımsız kaynakların değeri k katına çıkarılsın ve devre çözülsün
Thevenin (1883) ve Norton (1926) Teoremleri Amaç: Lineer, zamanla değişmeyen çok uçlu, iki uçlu dirençlerden ve bağımsız akım ve gerilim kaynaklarından oluşmuş bir N 1-kapılısının basit bir eşdeğerini elde etmek. Thevenin Eşdeğeri: + _ v i RTH VTH + _ v i N 1-Kapılısı
_ _ _ RTH Thevenin eşdeğer direnci + v i RTH VTH Devredeki tüm bağımsız kaynaklar devre dışı iken 1-1’ uçlarından görülen eşdeğer direnç VTH Açık devre gerilimi 1-1’ uçları açık devre iken 1-1’ uçları arasındaki gerilim Thevenin Teorem: N 1-kapılısının uçlarına i değerinde bir akım kaynağı bağlandığında tüm i değerleri için tek çözümü varsa ( tek v değeri belirlenebiliyorsa) Thevenin eşdeğeri vardır. Norton Eşdeğeri: + _ v i GN iN + _ v i N 1-Kapılısı
_ + v i GN iN GN Norton eşdeğer iletkenliği Devredeki tüm bağımsız kaynaklar devre dışı iken 1-1’ uçlarından görülen eşdeğer iletkenlik iN Kısa devre akımı 1-1’ uçları kısa devre iken 1-1’ uçlarındaki akım Norton Teorem: N 1-kapılısının uçlarına v değerinde bir gerilim kaynağı bağlandığında tüm v değerleri için tek çözümü varsa ( tek i değeri belirlenebiliyorsa) Norton eşdeğeri vardır. Thevenin Eşdeğeri: N kapılısı akım kontrollü değilse Thevenin eşdeğeri yok Norton Eşdeğeri: N kapılısı gerilim kontrollü değilse Norton eşdeğeri yok Norton eşdeğeri yok Thevenin eşdeğeri yok
Sonuç: Lineer, zamanla değişmeyen direnç ve bağımsız kaynaklardan oluşmuş N 1-kapılısı akım kontrollu ise bağlı bulunduğu devrenin çözümünü etkilemiyecek şekilde Thevenin eşdeğeri ile ifade edilir. Lineer, zamanla değişmeyen direnç ve bağımsız kaynaklardan oluşmuş N 1-kapılısı gerilim kontrollu ise bağlı bulunduğu devrenin çözümünü etkilemiyecek şekilde Norton eşdeğeri ile ifade edilir.
Eleman Tanım Bağıntıları v i q Ø direnç Kapasite endüktans memristor Direnç Elemanı: v ve i arasında cebrik bağıntı ile temsil edilen eleman Endüktans Elemanı: Ø ve i arasında cebrik bağıntı ile temsil edilen eleman Kapasite Elemanı: v ve q arasında cebrik bağıntı ile temsil edilen eleman Memristor Elemanı: Ø ve q arasında cebrik bağıntı ile temsil edilen eleman
2-uçlu Kapasite ve Endüktans Elemanları Lineer ve Zamanla Değişmeyen Kapasite Endüktans Zamanla Değişmeyen Lineer olmayan ve zamanla değişenleri ifade edebilmek için akı ve yük kullanılır: L.O. Chua, C.A. Desoer, S.E. Kuh. “Linear and Nonlinear Circuits” Mc.Graw Hill, 1987, New York
Kapasite Endüktans akı kontrollü yük kontrollü gerilim kontrollü akım kontrollü türetilebilir bir fonksiyon ise türetilebilir bir fonksiyon ise
Lineer Zamanla Değişmeyen Kapasite Endüktans Lineer Olmayan Zamanla Değişmeyen L.O. Chua, C.A. Desoer, S.E. Kuh. “Linear and Nonlinear Circuits” Mc.Graw Hill, 1987, New York
Lineer Zamanla Değişen Kapasite Endüktans L.O. Chua, C.A. Desoer, S.E. Kuh. “Linear and Nonlinear Circuits” Mc.Graw Hill, 1987, New York
Zamanla Değişmeyen Lineer Kapasite ve Endüktans Elemanlarının Özellikleri Kapasite Endüktans Bellek Özelliği sadece ‘ye değil, ‘nun aralığındaki tüm geçmiş değerlerine de bağlı sadece ‘ye değil, ‘nun aralığındaki tüm geçmiş değerlerine de bağlı ilk koşul, geçmiş , değerlerinin ‘ye etkisini veriyor.
değerler alıyorsa, kapasite gerilimi , Endüktans Süreklilik Özelliği , aralığında sınırlı değerler alıyorsa, kapasite gerilimi , aralığında sürekli bir fonksiyondur. , aralığında sınırlı değerler alıyorsa, kapasite gerilimi , aralığında sürekli bir fonksiyondur. L.O. Chua, C.A. Desoer, S.E. Kuh. “Linear and Nonlinear Circuits” Mc.Graw Hill, 1987, New York
Kayıpsızlık Özelliği Tanım: (Enerji) aralığında bir elemana aktarılan toplam enerji [Joules] ‘dur. Kapasite Endüktans Yük kontrollü kapasite elemanına ilişkin enerji kapasite gerilimi veya yük fonksiyonundan bağımsızdır. ve anlarındaki yük değerleri ile belirlenir. Akı kontrollü endüktans elemanına ilişkin enerji endüktans akımı veya akı fonksiyonundan bağımsızdır. ve anlarındaki akı değerleri ile belirlenir. Örnek:
sonuç Kapasite Endüktans Periyodik bir fonksiyon ile uyarıldığında, yük kontrollü kapasiteye ilişkin enerji bir peryod boyunca sıfırdır Periyodik bir fonksiyon ile uyarıldığında, yük kontrollü kapasiteye ilişkin enerji bir peryod boyunca sıfırdır Bir kapasiteden alınabilecek maksimum enerji miktarı Bir endüktanstan alınabilecek maksimum enerji miktarı
1. Mertebeden Lineer Devreler E.T.B+KGY E.T.B+KAY Durum Denklemleri, Kalman (1960) L.O. Chua, C.A. Desoer, S.E. Kuh. “Linear and Nonlinear Circuits” Mc.Graw Hill, 1987, New York
1. Mertebeden Diferansiyel Denklem Çözümü varsayım: