Zamanla Değişmeyen Lineer Kapasite ve

Slides:



Advertisements
Benzer bir sunumlar
Seri ve Paralel Rezonans Devreleri ve Uygulamaları
Advertisements

Sadık Sayim Oğuz Yelbey Ali Pala Mustafa Dursun
Mustafa Kösem Özkan Karabacak
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Elektrik Devrelerinin Temelleri dersinde ne yapacağız? Amaç: Fiziksel devrelerin elektriksel davranışlarını öngörme akım ve gerilim Hatırlatma Teori oluşturken.
Graf Teorisi Pregel Nehri
Hatırlatma: Durum Denklemleri
Tanım: (Lyapunov anlamında kararlılık)
1. Mertebeden Lineer Devreler
Maksimum Güç Transferi Teoremi
Lineer, Zamanla değişmeyen 2- Kapılılar Zorlanmış çözüm ile ilgileniyor İlk koşullar sıfır 1- kapılılar için tanımladığımız Thevenin-Norton eşdeğerlerini.
ISIS IRIR ITIT Z=10e -j45, 3-fazlı ve kaynak 220 V. I R, I S, I T akımları ile her empedansa ilişkin akımları belirleyin.
Toplamsallık ve Çarpımsallık Özelliği
Devre Denklemleri: Genelleştirilmiş Çevre Akımları Yöntemi
Toplamsallık ve Çarpımsallık Özelliği
3-Fazlı Devreler Neden? Yüksek Gerilim Üç Faz AC- Kaynak
+ + v v _ _ Lineer Olmayan Direnç Bazı Özel Lineer Olmayan Dirençler
2- Jordan Kanonik Yapısı
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Thevenin (1883) ve Norton (1926) Teoremleri
Genelleştirilmiş Çevre Akımları Yöntemi
Izhikevich Sinir Hücresinin davranışı Deneysel sonuçModelden elde edilen sonuç E.M. Izhikevich, “Dynamical Systems in Neuroscience”, MIT Press, 2007.
2-Uçlu Direnç Elemanları
Negatif-Pozitif Geribesleme Devreleri Lineer bölgede v in vdvd ioio +vo+vo v in ioio +vo+vo +-+- vdvd.
Lineer Direnç Devreleri Lineer, zamanla değişmeyen direnç elemanları Bağımsız kaynaklar Amaç: Özel bir grup direnç elemanlarından oluşmuş devrelerin çözümü.
Devre ve Sistem Analizi
Eleman Tanım Bağıntıları
Elektrik Devrelerinin Temelleri
Devre ve Sistem Analizi
Devre Fonksiyonu: Özellik: Herhangibir devre fonksiyonunun genliği w’nın çift fonksiyonudur, fazı da her zaman w’nın tek fonksiyonudur. Tanıt: ve Lemma’dan.
Devre Denklemleri KAY: KGY: ETB:.
Sürekli Sinüsoidal Hal
Eleman Tanım Bağıntıları
İşlemsel Kuvvetlendirici
Eleman Tanım Bağıntıları
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Elektrik Devrelerinin Temelleri
npn Bipolar Tranzistör Alçak Frekanslardaki Eşdeğeri
Seri ve Paralel 2-uçlu Direnç Elemanlarının Oluşturduğu 1-Kapılılar
Hatırlatma: Kompleks Sayılar
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
+ + v v _ _ Hatırlatma Lineer Olmayan Direnç
_ _ Bazı Lineer 2-kapılı Direnç Elemanları
+ - i6 =2i i ik1 =cos2t Vk2 =sin(3t+15) R1 C6 ik1 Vk2 R1 = R1 = 1 ohm
Çok-Uçlu Direnç Elemanları
Ders Hakkında 1 Yarıyıl içi sınavı 11 Nisan 2010 % 26
Maksimum Güç Transferi Teoremi
Ders Hakkında 1 Yarıyıl içi sınavı 14 Nisan 2014 % 30
Hatırlatma * ** ***.
Lineer olmayan 2-kapılı Direnç Elemanları
Akım kontrollü gösterimini elde ediniz
KAY ve KGY toplu parametreli devrelerde geçerli
_ _ _ DC Çalışma Noktası Çözüm i tek çözüm çok çözüm + çözüm yok N Is
SSH’de Güç ve Enerji Kavramları
Lemma 1: Tanıt: 1.
Teorem: (Tellegen Teoremi) ne elemanlı bir G grafında KAY’sını
Laplace dönüşümünün özellikleri
Bir ağaç seçip temel kesitlemeleri belirleyelim Hatırlatma
Matrise dikkatle bakın !!!!
Ön bilgi: Laplace dönüşümü
Teorem: (Tellegen Teoremi) ne elemanlı bir G grafında KAY’sını
3-Fazlı Devreler Neden? Yüksek Gerilim Üç Faz AC- Kaynak
İşlemsel Kuvvetlendirici
Sunum transkripti:

Zamanla Değişmeyen Lineer Kapasite ve Endüktans Elemanlarının Özellikleri Kapasite Endüktans Bellek Özelliği sadece ‘ye değil, ‘nun aralığındaki tüm geçmiş değerlerine de bağlı sadece ‘ye değil, ‘nun aralığındaki tüm geçmiş değerlerine de bağlı ilk koşul, geçmiş , değerlerinin ‘ye etkisini veriyor.

değerler alıyorsa, kapasite gerilimi , Endüktans Süreklilik Özelliği , aralığında sınırlı değerler alıyorsa, kapasite gerilimi , aralığında sürekli bir fonksiyondur. , aralığında sınırlı değerler alıyorsa, kapasite gerilimi , aralığında sürekli bir fonksiyondur. L.O. Chua, C.A. Desoer, S.E. Kuh. “Linear and Nonlinear Circuits” Mc.Graw Hill, 1987, New York

Kayıpsızlık Özelliği Tanım: (Enerji) aralığında bir elemana aktarılan toplam enerji [Joules] ‘dur. Kapasite Endüktans Yük kontrollü kapasite elemanına ilişkin enerji kapasite gerilimi veya yük fonksiyonundan bağımsızdır. ve anlarındaki yük değerleri ile belirlenir. Akı kontrollü endüktans elemanına ilişkin enerji endüktans akımı veya akı fonksiyonundan bağımsızdır. ve anlarındaki akı değerleri ile belirlenir. Örnek:

sonuç Kapasite Endüktans Periyodik bir fonksiyon ile uyarıldığında, yük kontrollü kapasiteye ilişkin enerji bir peryod boyunca sıfırdır Periyodik bir fonksiyon ile uyarıldığında, yük kontrollü kapasiteye ilişkin enerji bir peryod boyunca sıfırdır Bir kapasiteden alınabilecek maksimum enerji miktarı Bir endüktanstan alınabilecek maksimum enerji miktarı

1. Mertebeden Lineer Devreler E.T.B+KGY E.T.B+KAY Durum Denklemleri, Kalman (1960) L.O. Chua, C.A. Desoer, S.E. Kuh. “Linear and Nonlinear Circuits” Mc.Graw Hill, 1987, New York

1. Mertebeden Diferansiyel Denklem Çözümü varsayım:

varsayım: öz çözüm zorlanmış çözüm

Durum Denkemlerinin Elde Edilmesi I- İki uçlu direnç, endüktans, kapasite bağımsız akım ve gerilim kaynaklarının oluşmuş devrelerde durum denklemlerinin elde edilmesi Amaç: durum değişkenleri - kapasite gerilimleri, endüktans akımları çıkış büyüklükleri - ilgilenilen eleman akımları ve gerilimleri giriş büyüklükleri - bağımsız akım kaynağının akımı ve bağımsız gerilim kaynaklarının gerilimleri Yöntem: 1. Adım: Uygun Ağaç Seçimi a-) gerilim kaynaklarını dal elemanı olarak seçiniz, ağaç tamamlanmamışsa (b)’ye geçiniz b-) kapasiteleri dal elemanı olarak seçiniz, ağaç tamamlanmamışsa (c)’ye geçiniz c-) dirençleri dal elemanı olarak seçiniz, ağaç tamamlanmamışsa (d)’ye geçiniz

Hangi devre büyüklüklerine karşı gelmekteler. c-) endüktansları dal elemanı olarak seçiniz 2. Adım: Durum değişkenlerini belirleme Dallardaki kapasite gerilimleri, kirişlerdeki endüktans akımları durum değişkenleridir. Durum değişkenlerini belirleyiniz ve uç denklemlerini yazınız. 3. Adım: Durum denklemlerini yazma Lineer bağımsız akım denklemlerini yazınız (Temel kesitlemelere ilişkin denklemler) Lineer bağımsız gerilim denklemlerini yazınız (Temel çevrelere ilişkin denklemler) Yazdığınız denklemlerden yararlanarak dallardaki kapasitelerin akımları ile kirişlerdeki endüktansların gerilimlerini, durum değişkenleri ve girişler cinsinden belirleyiniz. Hangi devre büyüklüklerine karşı gelmekteler.

II- Çok uçlu direnç, endüktans, kapasite bağımsız akım ve gerilim kaynaklarının oluşmuş devrelerde durum denklemlerinin elde edilmesi Yöntem: 1. Adım: Uygun Ağaç Seçimi Bir önceki durumdaki adımlar atılmadan önce Devrede bulunan çok uçluların yazılabilen tüm uç denklemlerini gözönüne alınız Her bir denklem için gerilim büyüklüğüne karşı gelen ucu grafa dal olarak , akım büyüklüğüne karşı gelen ucu grafa kiriş elemanı olarak yerleştiriniz. Bir önceki durumdaki adımları izleyerek ağacı belirleyiniz. Farklı uç denklemlerinden hangisi daha fazla durum değişkeni veriyorsa o duruma ilişkin ağacı uygun ağaç olarak seçiniz. Diğer Adımlar: devrede 2-uçlu direnç elemanı, kapasite, endüktans ve bağımsız kaynaklar varken ki durum ile aynı