Bu durumda lineer sistemin çözümleri neler olabilir? Tüm bu durum portrelerinde ortak bir şey var, ne? S. Haykin, “Neural Networks- A Comprehensive Foundation”2.

Slides:



Advertisements
Benzer bir sunumlar
Giriş Dikkat Altsistemi Yönlendirme Altsistemi Kısa Süreli Bellek Uzun Süreli Bellek Kontrol Birimi Kontrol Birimi F1 F2 ART nasıl çalışıyor? Mete Balcı,
Advertisements

Algoritma.  Algoritma, belirli bir görevi yerine getiren sonlu sayıdaki işlemler dizisidir.  Başka bir deyişle; bir sorunu çözebilmek için gerekli olan.
Dinamik sistemin kararlılığını incelemenin kolay bir yolu var mı? niye böyle bir soru sorduk? Teorem 1: (ayrık zaman sisteminin sabit noktasının kararlılığı.
Sinir Hücresi Nasıl Fark Edilmiş? eCell.jpg/512px-PurkinjeCell.jpg Ramon y Cajal ( )
Çıkış katmanındaki j. nöron ile gizli katmandaki i. nörona ilişkin ağırlığın güncellenmesi Ağırlığın güncellenmesi Hangi yöntem? “en dik iniş “ (steepest.
Hat Dengeleme.
Hatırlatma Ortogonal bazlar, ortogonal matrisler ve Gram-Schmidt yöntemi ile ortogonaleştirme vektörleri aşağıdaki özeliği sağlıyorsa ortonormaldir: ortogonallik.
Özdeğerler ve özvektörler
Determinant Bir kare matrisin tersinir olup olmadığına dair bilgi veriyor n- boyutlu uzayda matrisin satırlarından oluşmuş bir paralel kenarın hacmine.
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Devre ve Sistem Analizi
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Verilen eğitim kümesi için, ortalama karesel hata ‘yı öğrenme performansının ölçütü olarak al ve bu amaç ölçütünü enazlayan parametreleri belirle. EK BİLGİ.
Bir örnek : Sarkaç. Gradyen Sistemler E(x)’in zamana göre türevi çözümler boyunca Gradyen sistemlere ilişkin özellikler Teorem 6: (Hirsh-Smale-Devaney,
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Metrik koşullarını sağlıyor mu?
A1 sistemi A2 sistemi Hangisi daha hızlı sıfıra yaklaşıyor ? Hatırlatma.
Ders Hakkında 1 Yarıyıl içi sınavı 16 Nisan 2013 % 22 3 Kısa sınav 12 Mart 9 Nisan 14 Mayıs % 21 1 Ödev % 7 Yarıyıl Sonu Sınavı % 50.
Kararlılık Sıfır giriş kararlılığı Tanım: (Denge noktası) sisteminin sabit çözümleri, sistemin denge noktalarıdır. nasıl belirlenir? Cebrik denkleminin.
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Hopfield Ağı Ayrık zamanSürekli zaman Denge noktasının kararlılığı Lyapunov Anlamında kararlılık Lineer olmayan sistemin kararlılığı Tam Kararlılık Dinamik.
Momentum Terimi Momentum terimi Bu ifade neyi anımsatıyor? Lineer zamanla değişmeyen ayrık zaman sistemi HATIRLATMA.
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Kaos’a varmanın yolları DüzenKaos Nasıl? Umulmadık yapısal değişiklikler ile Bu nasıl oluşabilir? Ardışıl bir dizi dallanma ile, peryod katlanmasına yol.
İSTANBUL TEKNİK ÜNİVERSİTESİ ♦ ELEKTRONİK & HABERLEŞME MÜHENDİSLİĞİ x1x1 x2x2 xmxm 1 w1w1 w2w2 wmwm w m+1 v y Hatırlatma.
İSTANBUL TEKNİK ÜNİVERSİTESİ ♦ ELEKTRONİK & HABERLEŞME MÜHENDİSLİĞİ Hesaplamalı Sinirbilim Modeller farklı zamansal ve konumsal ölçeklerde süreçleri ele.
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Özkan Karabacak oda no:2307 tel.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron)
Hatırlatma: Olasılık Tanım (Şartlı olasılık): A olayı olduğunda B olayının olma olasılığı Bir örnek: çalışan işsiz Toplam Erkek Kadın
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Müştak Erhan Yalçın oda no:2304.
Hata Fonksiyonları Lojistik Fonksiyon ß ß Huber Fonksiyonu ß ß.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Uyarlanabilir Yankılaşım Teorisi
YÖNLENDİRME. Yönlendirme ● Statik ● Dinamik ● Kaynakta yönlendirme ● Hop by hop yönlendirme.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Devre ve Sistem Analizi
Ders notlarına nasıl ulaşabilirim
x* denge noktası olmak üzere x* sabit nokta olmak üzere
Eleman Tanım Bağıntıları
Doğrusal Olmayan Devreler, Sistemler ve Kaos
(Self-Organizing Map- Kohonen )
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Ayrık Zaman Hopfield Ağı ile Çağrışımlı Bellek Tasarımı
Dinamik Yapay Sinir Ağı Modelleri
npn Bipolar Tranzistör Alçak Frekanslardaki Eşdeğeri
Hatırlatma: Durum Denklemleri
Sistem Özellikleri: Yönetilebilirlik, Gözlenebilirlik
Geçen hafta ne yapmıştık
Elektrik Mühendisliğinde Matematiksel Yöntemler
İlk olarak geçen hafta farklı a değerleri için incelediğiniz lineer sisteme bakalım: MATLAB ile elde ettiğiniz sonuçları analitik ifade ile elde edilen.
Bazı sorular: Topolojik eşdeğerlilik ne işimize yarayacak, topolojik
ART nasıl çalışıyor? Giriş Dikkat Altsistemi Yönlendirme Altsistemi F2
Teorem 2: Lineer zamanla değişmeyen sistemi
Bu teorem sayesinde öteleme dönüşümü için söylenenleri
Sinir Hücresi McCulloch-Pitts x1 w1 x2 w2 v y wm xm wm+1 1 '
aynı cisim üzerinde tanımlanmış bir vektör uzayıdır.
Hopfield Ağı Ayrık zaman Sürekli zaman
Spektral Teori ters dönüşümler bunların genel özellikleri ve asıl
YAPI STATİĞİ II Düğüm Noktaları Hareketli Sistemlerde Açı Yöntemi
“Bilgi”’nin Gösterimi “Bilgi” İnsan veya Makina Yorumlama Öngörme
Diferansiyel denklem takımı
• EDVAC (Electronic Discrete Variable Automatic Computer)
Düğüm-Eyer Dallanması
Bazı Doğrusal Olmayan Sistemler
Eğiticisiz Öğrenme Hatırlatma
Meriç ÇETİN Pamukkale Üniversitesi Bilgisayar Mühendisliği Bölümü
NİŞANTAŞI ÜNİVERSİTESİ
Sunum transkripti:

Bu durumda lineer sistemin çözümleri neler olabilir? Tüm bu durum portrelerinde ortak bir şey var, ne? S. Haykin, “Neural Networks- A Comprehensive Foundation”2 nd Edition, Prentice Hall, 1999, New Jersey.

Dinamik sistemin özel bir çözümü: Denge noktası Kaç tane denge noktası olabilir? Sistemin davranışını incelemenin bir yolu kararlılığını incelemektir. Tanım: Lyapunov anlamında kararlılık sistemine ilişkin bir denge noktası olsun. Verilen herhangi bir için eşitsizliği eşitsizliğini gerektirecek şekilde bir bulunabiliyorsa denge noktası Lyapunov anlamında kararlıdır. Lineer sistemlerde denge noktasının Lyapunov anlamında kararlılığını incelemek için ne yapıyoruz? Denge noktasının kararlılığı neye denk, neden?

Lyapunov anlamında kararlılığı incelemenin bir yöntemi nedir? 2. Yöntem (Dolaysız) 1. Yöntem (Dolaylı) Lyapunov’un 2. yöntemi Tanım: Lyapunov Fonksiyonu Lyapunov Fonksiyonudur Teorem: Lyapunov Fonksiyonu olmak üzere, denge noktasının kararlı olması için yeter koşul için olmasıdır. 2. dereceden lineer olmayan bir dinamik sistemin kalıcı hal çözümleri için ne diyebiliriz? Poincare- Bendixson Teoremi: Kararlı denge noktaları Limit çevrim

Neden hep lineer sistemler ele alınıyor? “... not to produce the most comprehensive descriptive model but to produce the simplest possible model that incorporates the major features of the phenomenon of interest.” Howard Emmons Lineer sistem modeli neden yetersiz? “Virtually, all physical systems are nonlinear in nature.” M. Vidyasagar sonlu kaçış zamanı çoklu yalıtılmış denge noktası limit çevrim altharmonik, harmonik ve neredeyse periyodik çözümler kaos çoklu davranış

S. Haykin, “Neural Networks- A Comprehensive Foundation”, 2 nd Edition, Prentice Hall, 1999, New Jersey. Lineer olmayan sistemlerde başka nasıl çözümler var? Neden Sonuç Kütle çekim yasası Astronomik olaylar Atmosferin hareketleri Hava durumu tahmini Isaac Newton [ ] G.W.F. Von Leibniz [ ] Determinizm Öngörü

Laplace’s Demon: “If you can imagine a consciousness great enough to know the exact locations and velocities of all the objects in the universe at the present instant, as well as all forces, then there would be no secrets from this consciousness. It could calculate anything about the past or future from the laws of cause and effect.” Werner Heisenberg [ ] Belirsizlik Kuramı (1927): Herhangi bir cismin konumu ve hızı aynı anda tam olarak belirlenemez. “In the strict formulation of the causality law-’When we know the present precisely, we can calculate the future’- It is not the final clause, but rather the premise, that is false. We cannot know the present in all its determining details.” Yaklaşık olarak birbirine benzer nedenler yaklaşık olarak birbirine benzer sonuçlar doğururlar. Ed Lorenz [ ] Kelebek Kanadı Etkisi (1960):

Nasıl bir sistem? Sonuç Determinizm Öngörü Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) Hopfield Ağı, Elman Ağı

x1x1 x2x2 xmxm 1 w1w1 w2w2 wmwm w m+1 ' v y Sinir Hücresi McCulloch-Pitts Hatırlatma

Daha gerçekçi sinir hücresi modeli var mı? Hodgkin-Huxley Modeli Bu hücre modelini kullanmak çok uygun değil, sizce neden?

Gerçekçi ve ağ yapısı için uygulanabilir hücre modeli 1 1 Düğümü için KAY Nasıl yazıldı? Bu nasıl bir fonksiyon? Tüm hücreler için denklemleri biraz düzenleme ile yazarsak... Daha önce yazdığınız bir denklem takımına benziyor? Durum Denklemleri

Bir lineer dönüşüm ile denklemler biraz daha farklı yazılabilir.... Durum değişkenleri Girişler Çıkışlar

Hopfield Ağı Ayrık zamanSürekli zaman Denge noktasının kararlılığı Lyapunov Anlamında kararlılık Lineer olmayan sistemin kararlılığı Tam Kararlılık Dinamik sistemin kalıcı çözümünü incelemek için öncelikle denge noktalarının kararlılığına bakacağız

Soru: Sürekli zaman sistemi için denge noktalarını nasıl buluruz? Soru: Ayrık zaman sistemi için denge noktalarını nasıl buluruz? Sürekli Zaman Hopfield Ağının Kararlılık Analizi Lyapunov’un 2. yöntemi Tanım: Lyapunov Fonksiyonu Lyapunov Fonksiyonudur Teorem: Lyapunov Fonksiyonu olmak üzere, denge noktasının kararlı olması için yeter koşul için olmasıdır. Hatırlatma

Enerji Fonksiyonunu Lyapunov Fonksiyonu olarak seçebilir miyiz? Sizce koşulları sağlıyor mu? Dikkat!!! Türevine de bakalım..... Buradaki büyüklükler nasıl değerler alıyor? Ancak türev çözümler boyunca olan türev

Monoton artan fonksiyon Tam kararlı, neden?

Dinamik Sistem: Ayrık zaman modeli, her anda değişen durum sayısına bağlı olarak farklı şekillerde ele alınır: senkron parallel asenkron seri Dinamik sistemin çalışması bu yapıdadır. Ayrık Zaman Hopfield Ağının Kararlılık Analizi

Sürekli zamanda enerji fonksiyonunun çözümler boyunca olan türevine bakmıştık, şimdi ayrık zamandayız türev yerine ne ele alınacak? Asenkron Çalışma: n bileşenden sadece biri değişiyor. Bu durumda ‘nın nasıl değiştiğine dikkat edelim

Asenkron çalışan ayrık Hopfield’de tam kararlı

Hopfield ağını kullanacağımız uygulamalar Amaç: 1) Durum uzayındaki dinamik davranışı sonlu sayıdaki kararlı denge noktası ile belirlenen fiziksel sistem, çağrışımlı bellek olarak tasarlanabilir. 2) Aynı sistem, bir optimizasyon problemine ilişkin amaç ölçütünü azlayacak şekilde tasarlanabilir. Yapılan: 1) Bellekde saklanacak örüntüler dinamik sistemin kararlı denge noktalarına karşılık düşecek şekilde tam kararlı dinamik sistem tasarlanıyor. 2) Kısıtlı optimizasyon problemi Lagrange çarpanları yöntemi ile kısıtsız optimizasyon problemine dönüştürülür: Optimizasyon probleminin amaç ölçütü, Hopfield ağına ilişkin “Enerji Fonksiyonuna” denk alınır Hopfield ağına ilişkin parametreler, belirlenerek dinamik sistem tasarlanır.

Ayrık Zaman Hopfield Ağı ile Çağrışımlı Bellek Tasarımı Kullanılan Hücre Modeli: McCulloch-Pitts Eksik birşey var!! Örüntüler: 1. Aşama: Belleğin Oluşturulması n boyutlu, p tane veriden yararlanarak belleği oluşturmak için ağırlıklar belirlenmeli Her nöronun çıkışı diğer nöronların girişine bağlı kendisine geribesleme yok ağırlık matrisi simetrik

Ağırlıklar önceden hesaplanabilir veya ile belirlenebilir. 2. Aşama: Anımsama Dinamik yapı: Verilen bir ilk koşul için durumlar dinamik yapı gereği senkron veya asenkron yenilenir Neye karşılık düşüyor? Tüm nöronlar için olduğunda bellekte saklanan örüntülerden birine karşılık düşen bir kararlı düğüm noktasına erişilir. Örnek:

Bazı Sorular Gerçekten de belirlenen ağırlıklar ile istenilen kararlı denge noktalarına erişmemizi sağlayacak dinamik sistem yaratıldı mı? Eğer evet ise, bir bozulmuş veya eksik örüntü ile başlayarak bu örüntünün bellekteki aslına erişilebilinir mi? Herhangi bir ilk ilk koşul ile başlanıldığında ağa ilişkin dinamik hangi kararlı durum çözümünü verecek ? Küçük hata ile kaç örüntü belleğe yerleştirilebilinir?