Devre ve Sistem Analizi

Slides:



Advertisements
Benzer bir sunumlar
Sadık Sayim Oğuz Yelbey Ali Pala Mustafa Dursun
Advertisements

Projemizin İçeriği: Anahtarlanmış Doğrusal Sistemler
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
BİYOMEDİKAL MÜHENDİSLİĞİNDE İLERİ KONULAR Neslihan Serap Şengör Oda no: 1107 Tel:
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Elektrik Devrelerinin Temelleri dersinde ne yapacağız? Amaç: Fiziksel devrelerin elektriksel davranışlarını öngörme akım ve gerilim Hatırlatma Teori oluşturken.
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Tanım: (Lyapunov anlamında kararlılık)
1. Mertebeden Lineer Devreler
Zamanla Değişmeyen Lineer Kapasite ve
Lineer, Zamanla değişmeyen 2- Kapılılar Zorlanmış çözüm ile ilgileniyor İlk koşullar sıfır 1- kapılılar için tanımladığımız Thevenin-Norton eşdeğerlerini.
ISIS IRIR ITIT Z=10e -j45, 3-fazlı ve kaynak 220 V. I R, I S, I T akımları ile her empedansa ilişkin akımları belirleyin.
Toplamsallık ve Çarpımsallık Özelliği
Devre Denklemleri: Genelleştirilmiş Çevre Akımları Yöntemi
Toplamsallık ve Çarpımsallık Özelliği
Doğrusal Olmayan Devreler, Sistemler ve Kaos
+ + v v _ _ Lineer Olmayan Direnç Bazı Özel Lineer Olmayan Dirençler
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Müştak Erhan Yalçın oda no:2304.
2- Jordan Kanonik Yapısı
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Genelleştirilmiş Çevre Akımları Yöntemi
Doğrusal Olmayan Devreler, Sistemler ve Kaos
2-Uçlu Direnç Elemanları
Negatif-Pozitif Geribesleme Devreleri Lineer bölgede v in vdvd ioio +vo+vo v in ioio +vo+vo +-+- vdvd.
Lineer Direnç Devreleri Lineer, zamanla değişmeyen direnç elemanları Bağımsız kaynaklar Amaç: Özel bir grup direnç elemanlarından oluşmuş devrelerin çözümü.
Devre ve Sistem Analizi
Elektrik Devrelerinin Temelleri
Elektrik Devrelerinin Temelleri
Elektrik Devrelerinin Temelleri
Devre ve Sistem Analizi
Devre Fonksiyonu: Özellik: Herhangibir devre fonksiyonunun genliği w’nın çift fonksiyonudur, fazı da her zaman w’nın tek fonksiyonudur. Tanıt: ve Lemma’dan.
Devre Denklemleri KAY: KGY: ETB:.
Sürekli Sinüsoidal Hal
Eleman Tanım Bağıntıları
İşlemsel Kuvvetlendirici
Eleman Tanım Bağıntıları
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Özdeğerler, Sıfırlar ve Kutuplar
Elektrik Devrelerinin Temelleri
Dinamik Yapay Sinir Ağı Modelleri
npn Bipolar Tranzistör Alçak Frekanslardaki Eşdeğeri
Seri ve Paralel 2-uçlu Direnç Elemanlarının Oluşturduğu 1-Kapılılar
Hatırlatma: Kompleks Sayılar
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
+ + v v _ _ Hatırlatma Lineer Olmayan Direnç
_ _ Bazı Lineer 2-kapılı Direnç Elemanları
+ - i6 =2i i ik1 =cos2t Vk2 =sin(3t+15) R1 C6 ik1 Vk2 R1 = R1 = 1 ohm
Çok-Uçlu Direnç Elemanları
Ders Hakkında 1 Yarıyıl içi sınavı 11 Nisan 2010 % 26
Maksimum Güç Transferi Teoremi
Hatırlatma * ** ***.
Lineer olmayan 2-kapılı Direnç Elemanları
Akım kontrollü gösterimini elde ediniz
KAY ve KGY toplu parametreli devrelerde geçerli
_ _ _ DC Çalışma Noktası Çözüm i tek çözüm çok çözüm + çözüm yok N Is
SSH’de Güç ve Enerji Kavramları
Lemma 1: Tanıt: 1.
Teorem: (Tellegen Teoremi) ne elemanlı bir G grafında KAY’sını
Matrise dikkatle bakın !!!!
Ön bilgi: Laplace dönüşümü
Teorem: (Tellegen Teoremi) ne elemanlı bir G grafında KAY’sını
3-Fazlı Devreler Neden? Yüksek Gerilim Üç Faz AC- Kaynak
İşlemsel Kuvvetlendirici
Sunum transkripti:

Devre ve Sistem Analizi Özkan Karabacak oda no:2307 karabacak@itu.edu.tr

Değerlendirme 1 Vize 24 Temmuz 2013 %30 2 Kısa sınav 10 Temmuz 2013 %10 31 Temmuz 2013 %15 Final sınavı %45

Sık Sorulan Sorular Yoklama alıyor musunuz? Hayır! Bu sınavda hangi konulardan çıkar? Bugüne kadar işlerdiğimiz yere kadar... Ninova’ya nasıl kaydolabilirim? Otomatik olarak kaydolmuş olmanız gerekir. Ninova’dan İTÜ mail hesabınıza mail gelir. Eğer kaydolmadığınızı düşünüyorsanız, bana numaranızı belirterek mail atın. (karabacak@itu.edu.tr). Alıştırma için daha çok soru verebilir misiniz? Hayır, referans kitaplarında brçok soru bulabilirsiniz.

Kaynaklar: Yılmaz Tokad, “ Devre Analizi Dersleri” Kısım II, İ.T.Ü. Yayınları, 1977.   Yılmaz Tokad, “ Devre Analizi Dersleri” Kısım IV, Çağlayan Kitabevi, 1987. Cevdet Acar, “Elektrik Devrelerinin Analizi” İ.T.Ü. Yayınları, 1995. L.O. Chua, C.A. Desoer, S.E. Kuh. “Linear and Nonlinear Circuits” Mc.Graw Hill, 1987, New York ( İşlenen Bölümler: 9,10,11,13) M. Jamshidi, M. Tarokh, B. Shafai. “Computer-Aided Analysis and Design of Linear Control Systems”, Prentice Hall, 1992 ( İşlenen Bölümler: 2,3)

Elektrik Devrelerinin Temelleri dersinde neler öğrendiniz? Amaç: Fiziksel devrelerin elektriksel davranışlarını öngörme akım ve gerilim Devre Teorisinde Tanımlanmamış Büyüklükler : akım ve gerilim Devre Teorisinin Aksiyomları: Toplu parametreli, KAY, KGY Eleman Tanım Bağıntıları: Lineer ve lineer olmayan direnç elemanları, Kapasite, Endüktans Lineer zamanla değişmeyen devrelere özgü yöntemler: Düğüm gerilimleri, çevre akımları Bazı Teoremler: Tellegen Teoremi, Toplamsallık ve Çarpımsallık, Thevenin ve Norton Teoremleri Dinamik Devreler ve Çözümleri

Hatırlatma: Kompleks Sayılar Kartezyen Koordinatlar Polar Koordinatlar y x

Hatırlatma: Dinamik Devrelerin Çözümleri Durum Geçiş Matrisi öz çözüm zorlanmış çözüm öz çözüm zorlanmış çözüm

Öz çözümü bir daha yazarsak özdeğerler özvektörler Öz çözüm, özvektörler ve özdeğerler ile nasıl değişir? .............................................................................................................

Bu durumda lineer sistemin çözümleri neler olabilir? S. Haykin, “Neural Networks- A Comprehensive Foundation”2nd Edition, Prentice Hall, 1999, New Jersey. Tüm bu durum portrelerinde ortak bir şey var, ne?

Dinamik sistemin özel bir çözümü: Denge noktası Kaç tane denge noktası olabilir? Sistemin davranışını incelemenin bir yolu kararlılığını incelemektir. Tanım: Lyapunov anlamında kararlılık sistemine ilişkin bir denge noktası olsun. Verilen herhangi bir için bir bulunabiliyorsa; öyleki noktası Lyapunov anlamında kararlıdır. Lyapunov anlamında kararlı olan bir denge noktası için bir varsa; öyleki, denge noktası asimptotik kararlıdır.

Sürekli Sinüsoidal Hal Amaç: Özel çözümü belirlemeye yönelik bir yöntem geliştirmek Neden “sürekli sinüsoidal hal”? sürekli Kalıcı çözümle ilgileniyoruz sinüsoidal Devreyi uyaran kaynaklar sinüsoidal Yöntem sadece elektrik devreleri ile sınırlı değil; kontrol teorisinde, Kuantum elektroniğinde, elektromanyetik teoride de kullanılır. Araç: Fazör kavramından yararlanılacak Sinüsoidal genlik frekans faz

Fazör Fazör verildiğinde sinüsoidal büyüklüğe nasıl geçeceğiz? Frekans ve fazör biliniyorsa

Sinüsoidal Fazör