Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

BİL 4112 YAPAY ZEKA Hafta 3 – Bölüm 1. Arama Türleri Tüm arama yöntemlerinde başlıca düşünce, kısmı çözüm ardışıklıkları kümesini bulmak ve genişletmektir.

Benzer bir sunumlar


... konulu sunumlar: "BİL 4112 YAPAY ZEKA Hafta 3 – Bölüm 1. Arama Türleri Tüm arama yöntemlerinde başlıca düşünce, kısmı çözüm ardışıklıkları kümesini bulmak ve genişletmektir."— Sunum transkripti:

1 BİL 4112 YAPAY ZEKA Hafta 3 – Bölüm 1

2 Arama Türleri Tüm arama yöntemlerinde başlıca düşünce, kısmı çözüm ardışıklıkları kümesini bulmak ve genişletmektir Bilgisiz Arama (Körlemesine arama) Enine arama (Breadth-first search) Derinine arama (Depth-first search) Sınırlı Derinine arama (Depth-limited search) Sabit Maliyet Araması (Uniform-cost search) Yinelemeli derinine arama (Iterative deeping search) İki yönlü arama (Bi-directional search) Bilgili Arama Stratejileri (Sezgisel yöntemler) En iyisini arama (generic best-first search) Hırslı arama (Greedy best-best-first search) Işın arama (Beam search) A* araması (A* search) Özyinelemeli en iyisini arama (RBFS – Recursive best-first search)

3 Arama parametreleri Tam- kullanılan arama algoritması ile çözüm bulunuyor mu? (completeness) Mekan- algoritmanın kullandığı durum uzayının boyutu (bellek alanı – space complexity) Zaman- algoritmanın gerçekleştirilmesi için gereken zaman (time complexity) Optimal- bu algoritma ile durum uzayında en iyi çözümü bulmak mümkün mü? (optimality) 3

4 Bilgisiz veya Kör arama yöntemleri (Uninformed search strategies)

5 Bilgisiz (kör) arama yöntemleri Bilgisiz arama yöntemlerinde yalnız sorunun tanımında bulunan bilgiler kullanılabilir Enine arama Breadth-first search Derinine arama Depth-first search Sınırlı derinine arama Depth-limited search Yinelemeli derinine arama Iterative deepening search Sabit Maliyet Araması Uniform-cost search İki yönlü arama Bi-directional search

6 Kör Arama Kör arama yöntemlerinde çözüme ulaşmak için hiç bir bilgi verilmez. Aramanın her hangi adımında çözüme ne kadar yakın (veya uzak) olması hakkında veya çözümün bulunabileceği hakkında fikir yürütmek olası değildir. başlangıç durumu içeren elementi (ağacın kökü) seçmeli listedeki ilk yol amaç durumunda sonlanana dek veya liste boş olana dek aşağıdakileri yapmalı: listeden ilk yolu almalı İlk yolu, onun uç düğümünün tüm ardıllarına doğru genişletmekle yeni yollar oluşturmalı Döngülü tüm yolları gözden atmalı Amaç durumu bulunursa aramayı bitirmeli, eksi halde yeni yolları gözden geçirmeli Tüm yollar gözden geçirildikten sonra amaç durumu bulunamazsa aramayı başarısız kabul etmeli Kör arama

7 7 Durum UzayıCGCG CG SC S SR W CS L A R E SG FA Yol haritası

8 Enine arama Enine aramada ağaç soldan sağa, yukarıdan aşağıya doğru taranıyor. Bir seviyedeki tüm düğümler genişlendikten (tarandıktan) sonra bir sonraki aşağı seviyeye geçilir. CG SC S SR W CS L A SG FA R CS L SG AE R FA arama ağacı SG E başarı

9 Enine arama En yüzeyde (en üst seviye) olan genişlenmemiş düğümü genişletmeli FIFO yapısı: yeni ardıllar sona eklenecek

10 Enine arama En yüzeyde (en üst seviye) olan genişlenmemiş düğümü genişletmeli FIFO yapısı: yeni ardıllar sona eklenecek

11 Enine arama En yüzeyde (en üst seviye) olan genişlenmemiş düğümü genişletmeli FIFO yapısı: yeni ardıllar sona eklenecek

12 Enine arama En yüzeyde (en üst seviye) olan genişlenmemiş düğümü genişletmeli FIFO yapısı: yeni ardıllar sona eklenecek

13 Enine arama patrametreleri Tam? evet (b sonlu ise) Zaman? 1+b+b 2 +b 3 +… +b d O(b d ) Mekan? O(b d ) (her bir düğüm bellekte tutuluyor) Optimal? Evet (eğer her adım için değer = 1 ise); genelde ise Hayır, optimal değil Mekan sorunu çok önemlidir

14 Enine Arama Gen. düğüm { S } S { A B C } A { B C D E G } B { C D E G G' } C { D E G G' G" } D { E G G' G" } E { G G' G" } G { G' G" } Çözüm yolu- S A G <-- G’nin değeri-10 Genişlenen düğümler sayısı (amaç düğümle birlikte) = 7

15 Enine Arama-örnek d derinlikli tam arama ağacı; her bir yaprak olmayan düğümün b oğlu var: Toplam: 1 + b + b b d s 1 b b^2 b^d d 2 1 –Örnek: 12 derinlikli tam arama ağacında 0,…,11 derinlikte her düğümün 10 çocuğu var. –12.ci derinlikteki düğümlerin çocukları yoktur. –Böylece, ağaçta = ( ) düğüm var

16 Enine aramada mekan ve zaman değerlendirmesi 16

17 Derinine Arama Derinine aramada arama ağacı yukarıdan aşağıya en sol düğümden başlayarak yaprak düğüme ulaşılana dek geliştiriliyor. Eğer bir yolda çözüm bulunamazsa, arama sonraki en sol ve genişlenmemiş düğümle devam ettirilir. CG SC S SR W CS L A SG FA R CS L SG AE R FA Arama ağacı SG E başarı

18 Derinine Arama Derinine aramada arama ağacı yukarıdan aşağıya en sol düğümden başlayarak yaprak düğüme ulaşılana dek geliştiriliyor. Eğer bir yolda çözüm bulunamazsa, arama sonraki sol ve genişlenmemiş düğümle devam ettirilir. CG SC S SR W CS L A SG FA R CS L SG AE R FA Arama ağacı SG E başarı

19 Derinine arama Derinine arama işlemleri ardışıklığı SR L A R FA SG S SC CGCG LCSW W SGECS’CSW SGECS’CSW SGECS’CSW ECS’CSW Başl.kuyruk Kuyruk 1 Kuyruk 2 Kuyruk 3 Kuyruk 4 Kuyruk 5 Kuyruk 6 Kuyruk 7 Kuyruk 8 CG-SC genişlenmesi SC-S genişlenmesi S-SR, L, CS, W genişlenmesi SR genişlenemez L-A, SG, E, CS genişlenmesi A-R genişlenmesi R-FA genişlenmesi FA genişlenemez Başarı CG SC S SR W CS L A SG FA R CS L SG AE R FA Arama ağacı SG E CG SC S SR L A R FA SG

20 Derinine arama En derindeki genişlenmemiş düğümü genişletmeli LIFO yapısı, yani ardıllar öne yazılacak

21 Derinine arama En derindeki genişlenmemiş düğümü genişletmeli LIFO yapısı: ardıllar öne yazılacak

22 Derinine arama En derindeki genişlenmemiş düğümü genişletmeli LIFO yapısı, yani ardıllar öne yazılacak

23 Derinine arama En derindeki genişlenmemiş düğümü genişletmeli LIFO yapısı, yani ardıllar öne yazılacak

24 Derinine arama En derindeki genişlenmemiş düğümü genişletmeli LIFO yapısı, yani ardıllar öne yazılacak

25 Derinine arama En derindeki genişlenmemiş düğümü genişletmeli LIFO yapısı, yani ardıllar öne koyulacak

26 Derinine arama En derindeki genişlenmemiş düğümü genişletmeli LIFO yapısı, yani ardıllar öne yazılacak

27 Derinine arama En derindeki genişlenmemiş düğümü genişletmeli LIFO yapısı, yani ardıllar öne yazılacak

28 Derinine arama En derindeki genişlenmemiş düğümü genişletmeli LIFO yapısı, yani ardıllar öne yazılacak

29 Derinine arama En derindeki genişlenmemiş düğümü genişletmeli LIFO yapısı, yani ardıllar öne yazılacak

30 Derinine arama En derindeki genişlenmemiş düğümü genişletmeli LIFO yapısı, yani ardıllar öne yazılacak

31 Derinine arama En derindeki genişlenmemiş düğümü genişletmeli LIFO yapısı, yani ardıllar öne yazılacak

32 derinine arama (daha bir örnek) Düğümlerin yanında parantez içinde o düğümün taranma sırası gösterilip.

33 Derinine aramanın özellikleri Tam? Değil: sonsuz derinlik, döngülü uzaylar olabilir Tekrarlanan durumların önlenmesi için algoritmada değişiklik yapılıyor  sonlu uzayda tamlık Zaman? O(b m ): m, d’den çok büyük ise zaman oldukça büyük olacak; m-yol uzunluğu çözümler çok ise, enine aramadan daha hızlı olabilir Uzay? O(bm)- doğrusal uzay Optimal? Değil

34 Derinine Arama algoritması Gen. düğüm liste { S } S { A B C } A { D E G B C} D { E G B C } E { G B C } G { B C } Çözüm yolu S A G <-- G’nin değeri= 10 Genişlenen düğümler sayısı (amaç düğümle birlikte) = 5 S CB A D E G

35 Derinine Arama algoritması Algoritmanın esas özellikleri: Genişlenme için listeden her zaman en derindeki düğümü seçmeli ve yeni üretilmiş düğümleri listeye yazmalı liste LIFO yapılıdır. Genişlenme için seçilmiş düğüm amaç ise algoritmayı sonlandırmalı Sonlu olmayabilir Tam değil Exponensiyel zaman O(b d ) Doğrusal mekan O(bd) şansımız varsa çözüm çok hızlı bulunabilir goal

36 Sınırlı Derinine Arama Derinliği sınırlı götürmekle derinine arama

37 Sınırlı Derinine Arama Bu arama yönteminde, derinine aramada olası sonsuz (ölü döngü) arama işlemini önlemek için aramanın belirli bir seviyeye kadar yapılması düşünülmektedir. Örneğin, Yol haritasında hiçbir çözüm 11’den fazla adım gerektirmeyecek. Çünkü, burada yalnız 12 yerleşim vardır. Bu nedenle biz sınır gibi 11’i kullanabiliriz. Döngülerin var olduğunu kabul etmiyoruz ve varsayıyoruz ki, sorun sonlu derinlik seviyesinde çözülebilir.

38 Sınırlı Derinine arama Eğer gereken çözüm L+1 derinlikte ise, o hiç zaman bulunamayacak. (L-sınır derinliği) Karmaşıklık bakımından yöntem sıradan derinine aramaya benzer (azami derinliği ifade eden derinlik sınırını göz önüne almakla) Zaman karmaşıklığı Uzay karmaşıklığı Tam?Optimal? O(b l ) Evet(çözüm <=l derinlikte ise) hayır

39 Sınırlı Derinine arama Sınırlı derinine arama yönteminde iyi arama sınırını bulmak çoğu zaman kolay olmayabilir. Arama uzayı büyük ve çözüm derinliği belli olmayan durumlarda yinelemeli derinine arama tercih edilen yöntemdir. Başarıya ulaşana dek derinlik sınırı her defa 1 artırılır.

40 Yinelemeli derinine arama Satranç turnuvalarında oyunlar kesin zaman sınırı içinde oynanır. Satranç programı her hamle için ne kadar zaman kullanmalı olduğu kararını vermelidir. Pek çok satranç programları arama işlemini yinelemeli derinine arama ile gerçekleştirmektedir. Başka değişle, program önce 2 seviyede, sonra 3, sonra 4… seviyede arama yapılır. Bu, arama için ayrılan süre dolana dek devam eder. Bundan sonra program, bulunan hamleler içinden en iyisini çözüm gibi kabul etmektedir.

41 Yinelemeli derinine arama fonksiyonu

42 Yinelemeli derinine arama l =0

43 Yinelemeli derinine arama l =1

44 Yinelemeli derinine arama l =2

45 Yinelemeli derinine arama l =3

46 Yinelemeli derinine arama Sınırlı derinine arama yönteminde üretilen düğümler sayısı: N DLS = b 0 + b 1 + b 2 + … + b d-2 + b d-1 + b d Yinelemeli derinine aramada üretilen düğümler sayısı: N IDS = (d+1)b 0 + d b 1 + (d-1)b 2 + … + 3b d-2 +2b d-1 + 1b d Örnek: b = 10, d = 5, N DLS = , , ,000 = 111,111 N IDS = , , ,000 = 123,456 Yineleme ve sınırlı arama arasındaki fark: (123, ,111)/111,111 = 11%

47 Yinelemeli derinine arama yönteminin özellikleri: Tam? Evet Zaman? (d+1)b 0 + d b 1 + (d-1)b 2 + … + b d = O(b d ) Mekan? O(bd) Optimal? Evet (eğer adım değeri=1)

48 Sabit maliyet Araması (Uniform-Cost Search) g(n) = başlangıç düğümden açık n düğümüne yolun değeri Algoritma: her zaman en küçük g(n) değerli düğümü seçmeli; tüm yeni üretilmiş düğümleri listeye kaydetmeli Listedeki düğümleri g(n) ‘nin artması ardışıklığı ile sıralamalı Açılmak için seçilmiş düğüm amaç ise algoritmayı sonlandırmalı Algoritmalarla bağlı kaynaklarda“Dijkstra Algoritması”, yöneylem araştırmasında “Dal ve Sınır Algoritması” denir (Branch and Bound Algorithm)

49 Sabit maliyet Araması Açılan düğüm düğümler listesi {S(0)} S {A(1) B(5) C(8)} A {D(4) B(5) C(8) E(8) G(10)} D {B(5) C(8) E(8) G(10)} B {C(8) E(8) G’(9) G(10)} C {E(8) G’(9) G(10) G”(13)} E {G’(9) G(10) G”(13) } G’ {G(10) G”(13) } çözüm yolu S B G <-- G’nin değeri 10 değil, 9’tur Açılan düğüm sayısı (amaç düğümle birlikte) = 7 S CB A D E G G’ G” 8 5 4

50 Sabit maliyet yönteminin özellikleri Tam (her bir adımın değeri sonsuz değilse) g(n) <= g(amaç) koşulu ile durum uzayında düğümler sayısı n sonludur) n’ düğümü n ’in oğlu ise g(n’) = g(n) + c(n, n’) > g(n) Amaç düğümü nihayette üretilecek ve amaç denemesinden geçecek Optimal/Uygun Amaç denemesine bağlıdır Çoklu çözüm yolları Açık n düğümünden üretilen her çözüm yolunun değeri >= g(n) Genişlenme için açılan ve denemeden geçen birinci düğümün yol değeri listedeki her bir açık düğümün değerinden küçük veya eşittir Eksponensiyel zaman ve mekan karmaşıklığı (b d ) ; d- en küçük değerli çözüm için çözüm yolunun derinliğidir

51 Tekrarlanan Durumlardan Kurtulmak Amaç: Durum uzayının boyutunu küçültmekle arama etkisinin yükseltilmesi 1. Bir önce bulunduğun duruma geri dönmemeli 2. Döngü yapacak yolları oluşturmamalı 3. Daha önce oluşturulmuş olan bir durumu yeniden oluşturmamalı

52 Kuyruk / stack = [kök durum] bulundu = FALSE Açılan durumlar = boş While (kuyruk / stack <> boş) and (bulundu <> FALSE) Kuyruk / stack’ ten ilk durumu (N) çek N’ yi açılan durumlar listesine ekle Eğer N hedef durumsa, bulundu = TRUE N’den gidilebilecek tüm durumlardan açılan durumlar listesinde olmayanları kuyruğun sonuna / stack’ in başına ekle Tekrarlanan Durumlardan Kurtulmak

53 İki yönlü Arama- Bi-directional search Başlangıç durumdan amaca ve amaç durumundan başlangıca doğru aynı zamanda arama Yollar kesiştiğinde durmalı Tek bir başlangıç ve amaç durumu oldukça, ayrıca, hareketler değiştirilebilir oldukça iyidir Çözüme daha hızlı ulaşmak mümkün olabilir

54 İki yönlü Arama- Bi-directional search b=10, d=6 için her bir yön 3 derinliğinde olur ve oluşturulan düğüm sayısı 2,222 dir. Genişlik öncelikli (enlemesine) aramada bu sayı 1,111,111. Bazı problemler (?) için, geriye doğru operatörleri kullanmak zordur.

55 İki yönlü Arama- Bi-directional search İleri ve geri aramaların her biri sadece yarım yol gider. Enlemesine arama yapılır. Tam? Evet Zaman? O((bd)/2) Mekan? O((bd)/2) Optimal? Eğer tüm maliyetler eşitse, Evet

56 Bilgisiz Arama stratejilerinin karşılaştırılması * maliyetlerin eşit yani her adım için = 1 birim olduğu durumlar

57 Bilgisiz Arama Yöntemlerinin özeti Yapay Zekada kullanılan arama teknikleri, bizi verilen başlangıç durumdan amaç durumuna (durumlarına) doğru götüren adımlar ardışıklığının bulunmasına dayanmaktadır. Enine ve derinine arama algoritmaları sonlu arama ağacında tüm düğümlerin bakılmasını gerektirebilir. Ayrıca, her adımdaki maliyetler eşit değilse, en iyi (optimal) çözümü garantileyemez. Bu veya diğer algoritmalardan birisinin seçimi, çözülecek sorunun yapısı, gereksinimleri, kıstaslarına bağlıdır. Kısmi yolların, uygun düzeyde bir derinlikten sonra ölü sona veya başarılı sona ulaşacağına inanılıyorsa, derinine arama yöntemini kullanmak mantıklıdır. Yinelemeli Derinine arama küçük bellek alanı ister (derinine arama gibi) ve en kısa yolu önce bulur (enine arama gibi).

58 Yol değeri (maliyetlerini) dikkate almadan, garantili biçimde optimal çözümü bulmak istiyorsanız, enine arama yöntemi öncelikle kullanılmalıdır. Daha az bellek alanı kullanmak gerekiyorsa derinine arama kullanmak daha etkilidir. Sabit Maliyet araması: Hareketlerin değerleri farklıdır En az değerli çözüm gerekiyor Yalnız sabit maliyet aramasında, yol değeri dikkate alınıyor Çözümü daha çabuk bulmak gerekiyorsa o zaman daha karmaşık algoritmalar (ikinci bölümde işleyeceğimiz sezgisel, vb) kullanılmalıdır ! Çözüm durumlarına götüren pek çok yol varsa, derinine arama hızlıdır, fakat yollar çok uzundur. Hedefe götüren yalnız bir kısa yol varsa, enine arama daha hızlıdır. Fakat arama uzayı geniş ve derindir. Bilgisiz Arama Yöntemlerinin özeti

59 Arama algoritmaları için örnekler https://courses.cs.washington.edu/courses/cse473/06sp/MazeRunnerD emo/search_algorithm_demo.htm https://courses.cs.washington.edu/courses/cse473/06sp/MazeRunnerD emo/search_algorithm_demo.htm


"BİL 4112 YAPAY ZEKA Hafta 3 – Bölüm 1. Arama Türleri Tüm arama yöntemlerinde başlıca düşünce, kısmı çözüm ardışıklıkları kümesini bulmak ve genişletmektir." indir ppt

Benzer bir sunumlar


Google Reklamları