Sunuyu indir
Sunum yükleniyor. Lütfen bekleyiniz
1
BENZETİM Prof.Dr.Berna Dengiz 7. Ders
2
BENZETİM İSTATİSTİK TEKRARI Olasılık ve istatistik bilgisine;
Giriş olasılık dağılımının belirlenmesinde Bu dağılımlardan rassal değişken üretiminde Benzetim modelinin geçerliliğinde Benzetim çıktısının istatistiksel analizinde ve Benzetim deney tasarımında ihtiyaç duyulmaktadır. Bu nedenle kullanılacak istatistik bilgileri ve notasyonlar burada kısaca hatırlatılacaktır.
3
BENZETİM Bir deney çıktısı rassal değişken olarak tanımlanır.
Bir deney sonucu çıktı olarak adlandırılır. Bir deneyin mümkün tüm çıktıları örnek uzayı ( ) olarak tanımlanır. Bir olay (örnek uzayının) alt setidir. A B = ( w € : ( w € A veya w € B ) A B = ( w € : ( w € A veya w € B ) A B = 0 ise A ve B ayrık ( birlikte ortaya çıkmayan) olaylardır.
4
BENZETİM 8. A herhangi bir olay olduğunda 0 P(A) 1 P( ) = 1
A1,A2,……. ayrık olaylar seti için; P(A1 A2 …..) = P(A1) + P(A2)+ …….. Yazılabiliyorsa P fonksiyonu olasılık ölçüsüdür.
5
BENZETİM Kesikli bir rassal değişken; sonlu ya da (sayılabilir sonsuz)
değerler alır. Sürekli bir rassal değişken; bir aralık boyunca değerler alabilir. (a,b) aralığı gibi Kesikli bir rassal değişken X’in olasılık fonksiyonu
6
BENZETİM Sürekli bir rassal değişken X’in olasılık yoğunluk fonksiyonu f(x) dir; Sürekli rassal değişken için X,
7
BENZETİM 11. Kümülatif dağılım fonksiyonudur.
Kesikli değişkenler için K.D.F ; Sürekli değişkenler için K.D.F ;
8
BENZETİM 12. 13.
9
BENZETİM TEOREM: X1 ,X2 ,……,Xn rassal değişkenler ise;
E (X1 + X2 +……+ Xn ) = E (X1 ) + E (X2 ) +…….+ E (Xn )’ dir. 14. P ( x a, y b ) = P ( x a ) P ( y b ) ( x ve y bağımsız olduğunda…) 15. Var (ax) = a2 var (x) Var (a) = (a sabit) E (ax) = a E(x) E(a) = a
10
BENZETİM 16. Cov (x, y) = E [ ( x - E(x)) ( y - E(y)) ]
Cov (x, y) = E (x y) – E (x) E (y) (Kovaryans iki rassal değişken arasındaki bağımlılığın ölçüsüdür.) TEOREM: x ve y herhangi iki rassal değişken olsun ; Var (x + y) = var (x) + var (y) cov (x,y) dir.
11
BENZETİM TEOREM: y= (x+a) / b , y ve x değişkenleri
parametreleri farklı aynı dağılıma sahiptirler. TEOREM: Z ; standart normal dağılım denir.
12
BENZETİM
13
BENZETİM TEOREM: y1, y2,……,yn ~ N ( µ , ) ( yi‘ler bağımsız değişkenlerdir.)
14
BENZETİM İSPAT:
15
BENZETİM TEOREM: MERKEZİ LİMİT TEOREMİ
y1, y2…..,yn ortalaması µ ve varyansı olan herhangi bir dağılımdan gelen rassal değişkenler olsun;
16
BENZETİM TANIM: μk = E(xk ) x rassal değişkeninin orijine göre momentidir. μk = E(x-E(x))k ortalama etrafında k. moment 1) μ1' = E(x) dağılımın ortalaması 2) μ2 = E(x-E(x))2 = μ2' - (μ1')2 dağılımın varyansı 3) μ3 = E(x-E(x))3 = μ3‘ - 3.μ2'. μ1‘ + 2(μ1')3
17
BENZETİM A herhangi bir olay olduğunda 0 P(A) 1 P( ) = 1
A1,A2,……. ayrık olaylar seti için; P(A1 A2 …..) = P(A1) + P(A2) + …….. Yazılabiliyorsa P fonksiyonu olasılık ölçüsüdür.
18
Çarpıklık (Asimetri) Ölçüsü
BENZETİM Çarpıklık (Asimetri) Ölçüsü (skewness)
19
Basıklık Ölçüsü (Kurtosis);
BENZETİM Basıklık Ölçüsü (Kurtosis); 4) μ4 = E(x-E(x))4 = μ4' - 4μ3' μ1' + 6μ2' (μ1')2 - 3(μ1')4
20
BENZETİM 4 standart basıklık katsayısıdır.
( dağılımın yatay eksene göre görünümünün bir ölçüsüdür.) normal dağılımda 4 = 3 uniform dağılımda 4 = 1,8 mk' = 1/n ( xik ) , moment tahmin edicisi ( k' 'nın tahmin edicisi )
21
BENZETİM TANIM: xi ve xj değişkenleri arasındaki kovaryans ,
cij = E[(xi - i ) [(xj - j )] E(xi ) = i E(xj ) = j xi ve xj bağımsız değişkenler ise cij = 0 dır.
22
BENZETİM TANIM: Korelasyon Katsayısı
23
1) YERLEŞİM (LOCATİON ) PARAMETRESİ :
BENZETİM TANIM: Teorik tanımlar 3 tür parametre ile tanımlanırlar. 1) YERLEŞİM (LOCATİON ) PARAMETRESİ : Dağılımın apsis üzerindeki açıklığını belirler.
24
Aynı dağılım , Yerleşim farklı
BENZETİM Aynı dağılım , Yerleşim farklı
25
2) ÖLÇEK (SCALE) PARAMETRESİ :
BENZETİM 2) ÖLÇEK (SCALE) PARAMETRESİ : Dağılımın yüksekliğini belirler. Aşağıdaki normal dağılımlarda yerleşim parametresi () sabitken , yükseklik parametreleri ()birbirinden farklıdır. Normal dağılımda ; yerleşim parametresi , yükseklik parametresi
26
3) ŞEKİL (SHAPE) PARAMETRESİ :
BENZETİM 3) ŞEKİL (SHAPE) PARAMETRESİ : Dağılımın şeklini belirler. Üstel dağılım şekil parametresine sahip değildir. Gamma dağılımının şekli değerine göre değişir. > 0 , > 0
27
BENZETİM
Benzer bir sunumlar
© 2024 SlidePlayer.biz.tr Inc.
All rights reserved.