Sunuyu indir
Sunum yükleniyor. Lütfen bekleyiniz
1
UYGULAMALAR_2 YAĞIŞ
2
PLÜVYOGRAF KAYITLARININ DEĞERLENDİRİLMESİ
Plüvyograflı bir yağış İstasyonunda 12 Mart 1993 günü kaydedilen,6 saat süreli yağışın plüvyograf kaydı (toplam yağış eğrisi) şekilde gösterilmiştir. a) Δt=1 saat için yağış hiyetografını çıkarınız. b) Δt=2 saat için yağış hiyetografını çıkarınız. t(saatler) P(mm) 1 6 2 20 3 44 4 54 5 58 60
3
PLÜVYOGRAF KAYITLARININ DEĞERLENDİRİLMESİ - ÇÖZÜM
Toplam yağış eğrisinden t=1,2,3….,6 saatleri için okunan toplam yağışlar (P) arasındaki ardışık farklar (ΔP), hiyetografa esas olan Δt=1 saat süresine bölünerek,bu zaman dilimlerindeki ortalama şiddetler hesaplanır. Bu kez t=2,4,6 saatlerindeki toplam yağışlar arasındaki ardışık farklar Δt=2 saat ile bölünerek,ikişer saatlik zaman dilimlerindeki ortalama şiddetler hesaplanır. t(saatler) P(mm) ∆P(mm) I=∆P/∆t (mm/saat) 6 14 24 10 4 2 1 20 3 44 54 5 58 60 t(saatler) P(mm) ∆P(mm) I=∆P/∆t 20 34 6 10 17 3 2 4 54 60
4
EKSİK YAĞIŞ GÖZLEMLERİNİN TAMAMLANMASI
Aynı bölgede bulunan 4 meteoroloji istasyonunda ölçülen yıllık yağışlar aşağıdaki tabloda verilmiştir yılında y istasyonunda ölçülemeyen yıllık yağışı: Basit aritmetik ortalama Ağırlıklı ortalama y ve x3 istasyonlarının regresyonu yöntemleriyle ayrı ayrı hesaplayarak karşılaştırınız.
5
EKSİK YAĞIŞ GÖZLEMLERİNİN TAMAMLANMASI - ÇÖZÜM
y̅(1985)= ( ) / 3 = 672 mm/yıl y̅(1985)=1/3 [ 7060/8830 (750) /7850 (680) /7070 (585) ] = 599 mm/yıl y ve x3 istasyonlarının basit doğrusal regresyonu: N=9 x̅ 3 = mm/yıl ; s̅ 3 = mm/yıl y̅ = mm/yıl ; s̅ y = mm/yıl S̅ x3y = (mm/yıl)2 ; rx3y =17484,72 / (124.51)x9x(141.28) = 0.994 by = (141.28)/(124.51)=1.128 ay = (785.56)= -102 mm/yıl y̅ (1985) = 1.128(585)-102 = 558 mm/yıl 1985 yılı için en güvenilir tahmin regresyon yoluyla elde edilen 558 mm/yıl değeri, en hatalı tahmin ise basit aritmetik ortalama yoluyla elde edilen 672 mm/yıl değeridir.
6
ÇİFT EKLENİK EĞRİ YÖNTEMİYLE HOMOJENLİK KONTROLÜ
İzmir, Bergama, Aydın, Muğla ve Bodrum yağış istasyonlarında gözlemlerin ortalamasından (Px) yararlanarak, Marmaris yağış istasyonundaki gözlemlerin (Py) homojenliğini,çift eklenik değerler analizi yöntemini kullanarak araştırınız.
7
ÇİFT EKLENİK EĞRİ YÖNTEMİYLE HOMOJENLİK KONTROLÜ
8
ÇİFT EKLENİK EĞRİ YÖNTEMİYLE HOMOJENLİK KONTROLÜ - ÇÖZÜM
Eklenik değerlerin noktalanmış olduğu grafikten 1963 yılından daha eski yıllarda Marmaris’te gözlenmiş yağışların homojen olmadığı anlaşılmaktadır. 1957’den 1963’e kadarki homojen Marmaris yağışlarını hesaplamak için,homojen bölgedeki orijinden doğrunun eğimini bulmak gerekir. Şekilden de görüldüğü gibi bu eğim 1.608’dir. Düzeltilmiş (homojen) Marmaris yağışları,orijinden geçen doğrunun denkleminde 1957 ile 1962 yılları arasında ∑Px eklenik absis değerleri kullanılarak hesaplanacak ∑P’y değerlerinin ardışık farklarını alarak veya doğrudan doğruya 1957,1958,...,1962 yıllarındaki Px yıllık yağışlarını tan α=1.608 ile çarparak elde edilebilir.
9
ALANSAL ORTALAMA YAĞIŞ HESABI
Yağış alanı 220 km2 olan bir barajın bulunduğu yöre için yıllık eş yağış eğrileri (izohiyetleri) aşağıdaki şekilde gösterilmiştir. Baraj yağış alanı üzerindeki yıllık ortalama yağışı hesaplayınız. Dilim No Alan ai (Km2) Ort. Yağış P̅i (mm) 1 10 870 2 32 950 3 46 1050 4 58 1150 5 50 1250 6 24 1330 ∑ 220 -
10
ALANSAL ORTALAMA YAĞIŞ HESABI - ÇÖZÜM
İzohiyetler arasında kalan kısmi alanlar (ai) planimetre ile ölçülür ve her kısmi alan için bir ortalama yağış (P̅i) takdir edilir. Yağış alanını tümüyle kesen iki izohiyet değerlerinin aritmetik ortalaması kabul edilebilir. Kısmi alanlar (ai) kendilerine ait ortalama yağışlarla (P̅i) çarpılıp (P̅iai) toplanır. Bu toplam, yağış alanına bölünerek alansal ortalama yağış (Port) bulunur. Dilim No Alan ai (Km2) Ort. Yağış P̅i (mm) P̅iai 1 10 870 8700 2 32 950 30400 3 46 1050 48300 4 58 1150 66700 5 50 1250 62500 6 24 1330 31920 ∑ 220 - 248520
11
YAĞIŞ ŞİDDETİ-SÜRE-TEKERRÜR BAĞINTISI (GRAFİK ANALİZİ)
Bir meteoroloji istasyonunda 1, 2, 4 saat süreli 5, 10 ve 20 yıl tekerrürlü yağışların şiddetleri aşağıdaki çizelgede verilmiştir. Bu istasyondaki yağışlar için Matematiksel formundaki şiddet-süre-tekerrür bağıntısındaki K, b, c sabitlerini grafik analiz yoluyla saptayınız. T(yıl) Yağış şiddeti I(mm/saat) 1 saat 2 saat 4 saat 5 42,5 24,6 14,2 10 48,1 27,8 16,1 20 54,5 31,5 18,2
12
YAĞIŞ ŞİDDETİ-SÜRE-TEKERRÜR BAĞINTISI (GRAFİK ANALİZİ)
13
YAĞIŞ ŞİDDETİ-SÜRE-TEKERRÜR BAĞINTISI (GRAFİK ANALİZİ) - ÇÖZÜM
Yukarıdaki bağıntının payı belli bir T tekerrürü seçildiğinde A gibi sabit bir değer olacaktır. A=KTc Buna göre yağış şiddeti ile süre arasındaki ilişki I=A/tb Biçiminde, iki parametreli (A ve b ) üstel bir bağıntıya indirgenmektedir. Gerek A ile T arasındaki, gerekse I ile t arasındaki, her iki ekseni de logaritmik olan özel grafik kağıdında birer doğruyu göstermektedirler. Bu özellikten yararlanarak bağıntıdaki K,b,c sabitleri grafik yoldan elde edilebilirler. Logaritmik grafik kağıdının yatay eksenine süre (dakika olarak), düşey eksenine şiddet (mm/st) olmak üzere T= 5,10 ve 20 yıl tekerrürlü yağışlar grafik kağıdına noktalanır. Aynı tekerrürlü yağış noktaları için en uygun doğrular çizilir. Bu doğruların t=1 dakika düşey çizgisini kestiği noktalar okunur. T(yıl) A
14
YAĞIŞ ŞİDDETİ-SÜRE-TEKERRÜR BAĞINTISI (GRAFİK ANALİZİ) - ÇÖZÜM
Her doğrunun geometrik yoldan eğimi (b değerleri) hesaplanır. Eğimlerin birbirinden ölçüde farklı olmaması gerekir. Aksi halde öngörülen şiddet-süre-tekerrür bağıntısı uygun olmaz. İncelenen istasyonda 5,10 ve 20 yıl tekerrürlü yağışlara ait şiddet-süre grafiklerinin birbirine paralel ve yaklaşık olarak b=tan α =35mm/44mm=0.79 eğime sahip oldukları görülmektedir. Aynı logaritmik kağıt üzerinde, yatay eksen T(yıl), düşey eksen A değerleri olmak üzere (T,A) noktaları bulunur ve uygun bir doğru çizilir. Bu doğrunun t= 1 yıl düşey çizgisini kestiği ordinat K’yı, eğimi ise c’yi verir. Grafik üzerinden K= 180 okunmuştur, c ise c=tanβ = 8.5mm/48mm = 0.18 bulunmuştur. Buna göre şiddet-süre-tekerrür bağıntısı :
15
YAĞIŞ ŞİDDETİ-SÜRE-TEKERRÜR BAĞINTISI (analitik) - ÇÖZÜM
t1= 1 saat t2= 4 saat T1= 5 yıl I11 = I12 = 14.2 T2= 20 yıl I21 = I22 = 18.2
Benzer bir sunumlar
© 2024 SlidePlayer.biz.tr Inc.
All rights reserved.