Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

İKİ ÖRNEKLEM TESTLERİ. BAĞIMSIZ GRUPLARA İLİŞKİN HİPOTEZ TESTLERİ.

Benzer bir sunumlar


... konulu sunumlar: "İKİ ÖRNEKLEM TESTLERİ. BAĞIMSIZ GRUPLARA İLİŞKİN HİPOTEZ TESTLERİ."— Sunum transkripti:

1 İKİ ÖRNEKLEM TESTLERİ

2 BAĞIMSIZ GRUPLARA İLİŞKİN HİPOTEZ TESTLERİ

3 İKİ ÖRNEKLEM TESTLERİ 1. İKİ ORTALAMA ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ 2. İKİ YÜZDE ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ BAĞIMSIZ GRUPLARDA İKİ ÖRNEKLEM TESTLERİ PARAMETRİK TESTLER PARAMETRİK OLMAYAN TESTLER 1. MANN-WHITNEY U TESTİ 2. 2x2 Kİ-KARE TESTLERİ

4 BAĞIMSIZ İKİ GRUP OLMASI DURUMUNDA NİCELİK DEĞİŞKENLERİN KARŞILAŞTIRILMASINA İLİŞKİN HİPOTEZ TESTLERİ

5 1. İki ortalama arasındaki farkın önemlilik testi 2. Mann-Whitney U testi

6 Parametrik test varsayımları (normallik ve varyansların homojenliği) sağlandığında, ölçümle belirtilen sürekli bir değişken yönünden bağımsız iki grup arasında fark olup olmadığını test etmek için kullanılan bir önemlilik testidir. İKİ ORTALAMA ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ

7 4. Veri ölçümle belirtilen sürekli bir değişken olmalıdır. Ayrıca, örneklem büyüklüğü (n) yeterli olduğunda sayısal olarak belirtilen (ölen, doğan, hastalanan, yaşayan sayısı gibi) sürekli olmayan değişkenlere de uygulanabilir. Niteliksel verilere uygulanamaz. 1. Bu testte iki grubun aritmetik ortalamaları karşılaştırılmaktadır. Bu nedenle aşırı değerlerin aritmetik ortalamaya yapacağı olumsuz etkiler göz önünde bulundurulmalıdır. 2.Parametrik bir test olduğu için parametrik testlerle ilgili varsayımlar yerine getirilmelidir. 3. Gruplar birbirinden bağımsız olmalıdır. Bağımlı gruplara bu test uygulanamaz.

8 Örnek 1: Kandaki şeker miktarı yönünden bağımsız iki grup (örneğin; diyet uygulayanlarla uygulamayanlar, babası ya da annesi şeker hastası olanlarla olmayanlar,... gibi) arasında farklılık arandığında kullanılabilir. Örnek 2: Bulaşıcı hastalıklar bilgi puanı yönünden bağımsız iki grup (erkeklerle kadınlar, eğitim düzeyi yüksek olanlarla düşük olanlar, köysel bölgede oturanlarla kentsel bölgede oturanlar,... gibi) arasında farklılık arandığında kullanılabilir. ÖRNEKLER

9 Örnek 3: Yemekle birlikte çay içen ve içmeyen gruplar arasında hemoglobin düzeyleri bakımında fark olup olmadığının araştırılmasında kullanılabilir. Örnek 4: Kız ve erkek öğrencilerin biyoistatistik notları arasında fark olup olmadığının araştırılmasında kullanılabilir. ÖRNEKLER

10 TEST SÜRECİ 1.Hipotezlerin belirlenmesi 2.Test istatistiğinin hesaplanması 3.Yanılma düzeyinin belirlenmesi 4.İstatistiksel karar

11 TEST İŞLEMLERİ Önce her iki dağılımın normal dağılıma uyup uymadığı test edilir. Her ikisi de normal dağılıma uyuyorsa varyanslarının homojen olup olmadığı test edilir. Yokluk hipotezi İki yönlü seçenek hipotezi Tek yönlü seçenek hipotezi 1. Hipotezlerin Belirlenmesi

12 2. Test istatistiği (t hesap ) hesaplanması n 1 : Birinci gruptaki denek sayısı n 2 : İkinci gruptaki denek sayısı : Birinci grubun varyansı : İkinci grubun varyansı : Birinci grubun ortalaması : İkinci grubun ortalaması ~

13 3. Alfa yanılma düzeyi belirlenmesi 4. İstatistiksel karar l t hesap l > t tablo ise “iki ortalama arasında fark yoktur” şeklinde kurulan H 0 hipotezi reddedilir ve p<α (örneğin p<0,05) şeklinde gösterilir.

14 t Dağılım Tablosu

15 ÖRNEK : Koroner kalp hastası olan ve olmayan bireylerin kolesterol düzeylerine (CHL) ilişkin istatistikler aşağıdaki tabloda verilmiştir. Gruplar arasında CHL bakımından fark var mıdır? HastalıkOrtalamaS.SapmaMin.Maks.n Yok213,5735,5514828851 Var252,0542,3716533542

16 Gruplara ilişkin parametrik varsayımların (normallik ve varyansların homojenliği) incelenmesi: Normallik için kolay bir yaklaşım verilerin histogramını çizmektir.

17

18 Varyansların homojenliği için F dağılımından yararlanılır. Bu amaçla, büyük varyans küçük varyansa bölünerek elde edilen F hesap istatistiği seçilen yanılma düzeyinde (n 1 -1) ve (n 2 -1) serbestlik dereceli F tablo istatistiği ile karşılaştırılır. Burada Ho hipotezi; “varyanslar homojendir” şeklindedir. Karar: P>0,05 (varyanslar homojendir)

19 F DAĞILIMI TABLOSU (α=0.05)

20 1. Hipotezler: H o : H1:H1: 2. Test İstatistiğinin Hesaplanması:

21 3. Yanılma düzeyi: olarak belirlenmiştir. 4. İstatistiksel karar: p<0,05 (iki bağımsız grup ortalaması arasındaki fark istatistiksel açıdan anlamlıdır.)

22 Koroner kalp hastası olan ve olmayan bireylerin kolesterol düzeylerine ilişkin ortalama ve standart sapma grafiği

23 İki ortalama arasındaki farkın önemlilik testinin parametrik olmayan karşılığıdır. İki Ortalama Arasındaki Farkın Önemlilik Testi parametrik bir test olduğu için, parametrik test varsayımları sağlandığında ölçümle belirtilen sürekli bir değişken yönünden bağımsız iki grup arasında fark olup olmadığını test etmek için kullanılıyor idi. MANN-WHITNEY U TESTİ

24 Veri parametrik test varsayımlarını sağlamıyor ise İki Ortalama Arasındaki Farkın Önemlilik Testi yerine kullanılabilecek en güçlü test MANN-WHITNEY U TESTİ’dir. Parametrik test varsayımları sağlanmadan iki ortalama arasındaki farkın önemlilik testinin uygulanması, varılan kararın hatalı olmasına neden olabilir.

25 ÖRNEKLER: 1.Bir önceki örneklerde veri parametrik test koşullarını sağlamadığında, 2.Sigara içen içmeyen annelerin çocuklarının apgar skorları arasında fark olup olmadığının araştırılmasında,( Apgar Testi bebeğiniz doğduktan sonra, birinci ve beşinci dakikalarda gerçekleştirilen ve bebeğin genel sağlık durumunu anlamak için yapılan bir testtir. ) 3.Spor yapan ve yapmayan öğrencilerin bir dakika içindeki şınav sayıları arasında fark olup olmadığının araştırılmasında.

26 H 0 hipotezi: “İki ortalama arasında fark yoktur” şeklinde değil, “İki dağılım arasında fark yoktur” şeklinde kurulur. Test istatistiğinin hesaplanması: Mann-Whitney U testinde, gruplardaki denek sayısına bağlı olarak iki farklı test istatistiği hesaplanır. Hipotezler

27 a)Her iki gruptaki denek sayıları 20 ya da daha az olduğunda test istatistikleri İstatistiksel karar: U 1 ve U 2 değerinden büyük olanı (U max ) test istatistiği olarak seçilir ve belirlenen  yanılma düzeyindeki n 1 ve n 2 serbestlik dereceli U tablo istatistiği ile karşılaştırılır. U H >U tablo ise H 0 hipotezi reddedilir. n 1 : Birinci gruptaki denek sayısı n 2 : İkinci gruptaki denek sayısı R 1 : Birinci gruptaki değerlerin sıra numaraları toplamı.

28 b) Grupların birindeki ya da her ikisindeki denek sayıları 20’den fazla olduğunda test istatistiğinin hesaplanması n 1 : Birinci dağılımdaki denek sayısı n 2 : İkinci dağılımdaki denek sayısı U : U 1 veya U 2 den herhangi birisi kullanılabilir. Testin sonucunu etkilemez. Sadece bulunacak z değerlerinin işareti farklı olur.

29 İstatistiksel karar: Hesapla bulunan z değerine karşılık gelen olasılık z tablosundan bulunur. Bulunan olasılık değeri 0.5’den çıkartılır. Hipotez çift yönlü ise bulunan olasılık değeri 2 ile çarpılır. Bu değer, seçilen alfa yanılma olasılığından küçük ise Ho hipotezi reddedilir.

30 ÖRNEK : İki farklı hastalığa sahip 16-18 yaşlarındaki bireylerin beden kitle indeksleri hesaplanıyor. Beden kitle indeksleri hastalık gruplarına göre değişmekte midir? Hastalık Hastalık AB 18,60 19,65 20,45 23,50 25,55 16,15 17,15 17,70 18,10 18,60 28,50 28,65 28,65 29,1518,60 21,00 21,10 23,50 27,75

31 B16,1511 B17,1522 B17,7033 B18,1044 B18,6056 B18,6066 A18,6076 A19,6588 A20,4599 B21,001010 B21,101111 B23,501212,5 A23,501312,5 A25,551414 B27,751515 A28,501616 A28,651717,5 A28,651817,5 A29,151919 Grup SıraSıra no Yeni sıra no

32 Hipotezler: Ho: İki dağılım arasında fark yoktur. H 1 : İki dağılım arasında fark vardır. Test İstatistiği: U=Max (U 1, U 2 )=74,5

33 Yanılma düzeyi: α=0,05 olarak alınmıştır. 0,05 yanılma düzeyinde ve (9, 10) serbestlik derecesindeki U tablo istatistiği 66’dır. İstatistiksel karar: Ho hipotezi reddedilir ve iki hasta grubuna ilişkin beden kitle indeksi değerleri arasında fark olduğu söylenir.

34 MANN WHITNEY U TESTİ TABLOSU

35 HASTALIK OrtalamaOrtanca Standart Sapma En küçük En büyük IQR (Çeyrek değerler genişliği) A24,7425,554,3118,6029,158,60 B19,9618,603,5016,1527,754,14 Hastalık Gruplarına Göre İstatistikler

36 İki farklı hastalığa sahip bireylerin Beden Kitle İndeksine ait kutu-çizgi grafiği

37 BAĞIMSIZ İKİ GRUP OLMASI DURUMUNDA NİTELİK DEĞİŞKENLERİN KARŞILAŞTIRILMASINA İLİŞKİN HİPOTEZ TESTLERİ

38 1. İki yüzde arasındaki farkın anlamlılık testi 2. 2x2 Ki-kare testleri 2x2 ki-kare testi (Pearson ki-kare testi) Fisher kesin ki-kare testi

39 İKİ YÜZDE ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ Niteliksel bir değişken yönünden iki gruptan elde edilen yüzdelerin farklı olup olmadığını test etmek için kullanılır.

40 1.Eğitim düzeyi yüksek olan kadınlarla düşük olan kadınların aile planlaması yöntemi kullanma yüzdeleri arasında fark olup olmadığının araştırılmasında, 2.Sigara içen ve içmeyenlerin akciğer kanserine yakalanma yüzdeleri arasında fark olup olmadığının araştırılmasında, 3.Suyunda iyot miktarı yeterli olan ve olmayan bölgelerde yaşayanların guatr hastalığına yakalanma yüzdeleri arasında fark olup olmadığının araştırılmasında. ÖRNEKLER:

41 Grup Kişi SayısıOluş Sayısı Oluş Yüzdesi An1n1 a a / n 1 = p1 Bn2n2 b b / n 2 = p2 Toplamn 1 +n 2 =na+b (a+b)/n = p Genel Tablo

42 2. Test istatistiğinin (t) hesaplanması Burada, q = 1-p’dir. 1. Hipotezlerin belirlenmesi H 0 : İki yüzde arasında fark yoktur (P 1 =P 2 ) H 1 : İki yüzde arasında fark vardır (P 1 P 2 ) ~ TEST SÜRECİ

43 4. İstatistiksel karar l t hesap l > t tablo ise H 0 hipotezi reddedilir ve İki yüzde arasındaki farkın anlamlı olduğu söylenir (p<0.05). 3. Yanılma düzeyi belirlenir

44 ÖRNEK : Annesi çalışan ve çalışmayan çocuklarda öğün atlama dağılımı Çalışma durumu İncelenen Çocuk Sayısı Öğün Atlayan Çocuk Sayısı % Çalışan2012612.9 Çalışmayan2254419,6 Toplam4267016,4

45 p 1 = 0.129 p 2 = 0.196 p= 0.164 q= 1 – p = 1-0.164 = 0.836 1. Hipotezler: H 0 : İki yüzde arasında fark yoktur (P 1 =P 2 ) H 1 : İki yüzde arasında fark vardır (P 1 P 2 ) 2. Test İstatistiği:

46 olduğu için H o hipotezi kabul edilir ve p>0.05 şeklinde gösterilir. Annesi çalışan ve çalışmayan çocuklarda öğün atlama bakımından anlamlı bir farklılık yoktur. 3. Yanılma düzeyi: α=0,05 alınmıştır. 4. İstatistiksel karar:

47 Kİ-KARE TESTLERİ 1. Ki-kare testleri veri tipinin nitelik olduğu (kadın-erkek, iyileşti-iyileşmedi, hasta-sağlam, sosyo-ekonomik düzeyi iyi-orta-kötü,... gibi) verilerde kullanılır. 2. Ayrıca sürekli ya da kesikli sayısal veri tipinde olduğu halde sonradan nitelik veri konumuna dönüştürülen veriler arasında fark olup olmadığının incelenmesinde de kullanılır. 3. Veriler 2x2, 2x3, 3x3, 3x4,... Boyutlu çapraz tablo şeklinde olmalıdır.

48 2x2 ki-kare testi İki yüzde arasındaki farkın anlamlılık testinin uygulandığı durumlarda istenirse 2x2 ki-kare testinden de yararlanılabilir. 2x2 ki-kare testinin avantajı, gruplardaki gözlem sayılarının az olduğu durumlar için geliştirilmiş değişik ki-kare testlerinin olmasıdır. Gruplardaki gözlem sayısının az olması durumunda ki-kare testlerinden yararlanmak daha uygundur.

49 Ki-kare İçin Genel Formül: k: Toplam Göz Sayısı

50 ÖRNEKLER: 2x2 (4 gözlü) ki-kare tablosu Sigara Sağlıktan Var Yakınma YokToplam İçen İçmeyen Toplam

51 Eğitim Düzeyi Genel İyi Sağlık Orta Bilgisi KötüToplam Düşük Yüksek Toplam 2x3 ki-kare tablosu

52 2x2 ya da 4 gözlü ki-kare düzenleri; her gözdeki gözlem sayısının ya da beklenen frekansların belli bir değerin altında olup olmaması durumuna göre değişik şekillerde ve değişik adlar altında uygulanır.

53 1.Pearson Ki-kare Gözlerdeki gözlem sayısının 25’in üzerinde olması durumunda uygulanır. 2. Fisher kesin Ki-kare Herhangi bir gözdeki beklenen frekans değeri 5'in altında ise Fisher'in kesin ki-kare testinden yararlanılır.

54 Frekansı 41 olan göz için beklenen frekans: Toplam 199 Öğrenciden 67’si şişman ise 113 erkek öğrenciden kaçı şişmandır? orantısından: 67x113/199=38.05 olarak bulunur. Şişmanlık Durumu CinsiyetŞişmanŞişman Değil Toplam Erkek4172113 Kız266086 Toplam67132199 Üniversite öğrencilerinin cinsiyete göre şişmanlık oranları Örnek :

55 Cinsiyet Şişmanlık Durumu Toplam ŞişmanŞişman Değil Erkek41 (38.05)72 (74.95)113 Kız26 (28.95)60 (57.05)86 Toplam67132199 Gözlenen ve Beklenen Frekanslar

56 HİPOTEZLER H 0 : Şişmanlık açısından kızlar ve erkekler arasında fark yoktur. H 1 : Şişmanlık açısından kızlar ve erkekler arasında fark vardır. TEST İSTATİSTİĞİNİN HESAPLANMASI Gözlerde 25’in altında değer olmadığı için Pearson ki-kare testi uygulanabilir. Erkek öğrenciler için Kız öğrenciler için Toplam Ki-kare olarak bulunur.

57 YANILMA DÜZEYİ Serbestlik Derecesi = (satır sayısı-1)x(Sütun sayısı-1) = (2-1)x(2-1)=1 TABLO İSTATİSTİĞİ

58 Kİ-KARE TABLOSU

59 İSTATİSTİKSEL KARAR p>0.05 YORUM: Kız ve erkek öğrencilerin şişman olup olmama açısından aralarında istatistiksel olarak anlamlı bir farklılık yoktur [şişmanlık yüzdeleri: erkek öğrenciler için % 36.0 (41/113), kız öğrenciler için % 30.2 (26/86)]. Ho kabul

60 FISHER KESİN Kİ-KARE TESTİ 4 gözlü düzende gözlerden herhangi birisinde beklenen frekans 5’den küçükse ki - kare dağılımı çarpık ve kesikli olur. Bu durumda yukarıda anlatılan 4 gözlü düzende ki - kare testleri yerine Fisher kesin ki-kare testi uygulanır.

61 Sigara Sağlıktan Yakınma var yokToplam İçenabA İçmeyencdB ToplamCDn Fisher kesin ki - kare testi için test istatistiği:

62 P istatistiği bir olasılık değeridir. İstatistiksel karar için; Eğer hipotez tek yönlü ise hesapla bulunan olasılık değeri saptanan yanılma olasılığından küçükse H 0 hipotezi reddedilir, büyükse kabul edilir. Eğer hipotez çift yönlü ise hesapla bulunan olasılık değeri 2 ile çarpılır ve saptanan yanılma olasılığından küçükse H 0 hipotezi reddedilir, büyükse kabul edilir.

63 ÖRNEK : Diyet türü Kolesterol Düşen DüşmeyenToplam A8412 B1 13 Toplam91625 Tablo 1 Diyet türü Kolesterol Düşen DüşmeyenToplam A9312 B013 Toplam91625 Tablo 2

64 Çift yönlü p değeri = 2x0,003261 = 0,00652 1. Hipotezler Ho: Kolesterol düşürme bakımından diyetler farksızdır. H 1 : Kolesterol düşürme bakımından diyetler farklıdır. 2. Test İstatistiği 3. Yanılma düzeyi olarak α=0.05 alınmıştır.

65 4. İstatistiksel Karar P=0,00652<0,05 olduğu için Ho Hipotezi reddedilir. Kolesterol düşürme bakımından diyetler arasında fark vardır (p<0.05). A diyetinde bireylerin % 66.7’sinin (8/12) kolesterolü düşerken B diyetinde bireylerin % 7.7’sinin (1/13) kolesterolü düşmektedir.

66 BAĞIMLI GRUPLARA İLİŞKİN HİPOTEZ TESTLERİ

67 İKİ ÖRNEKLEM TESTLERİ 1.İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ 2.BAĞIMLI İKİ YÜZDE ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ PARAMETRİK TESTLER PARAMETRİK OLMAYAN TESTLER 1.WILCOXON TESTİ 2.BAĞIMLI ÖRNEKLERDE Kİ-KARE TESTİ (McNEMAR TESTİ)

68 BAĞIMLI İKİ GRUP OLMASI DURUMUNDA NİCELİK DEĞİŞKENLERİN KARŞILAŞTIRILMASINA İLİŞKİN HİPOTEZ TESTLERİ

69 1. İki eş arasındaki farkın önemlilik testi 2. Wilcoxon testi

70 İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ Parametrik test varsayımları sağlandığında, ölçümle belirtilen sürekli bir değişken yönünden aynı bireylerin değişik iki zaman ya da durumdaki ölçümleri arasında fark olup olmadığını test etmek için kullanılır.

71 Varsayım sağlanamıyor ise: Bu test yerine WILCOXON EŞLEŞTİRİLMİŞ İKİ ÖRNEK TESTİ kullanılmalıdır. Dikkat etmesi gereken noktalar: a.Veri ölçümle belirtilmiştir. b.Aynı bireyler üzerinde aynı konuda iki kez ölçüm yapılmaktadır. Varsayımları: İki grup arasındaki değerlere ilişkin fark değerleri dağılımının normal dağılım göstermesi

72 İki eş arasındaki farkın önemlilik testinin uygulandığı durumları üç grupta toplayabiliriz. Durum 1: Ölçümle belirtilen bir değişken yönünden aynı bireylerin değişik iki zaman ya da durumdaki ölçümlerinin farklı olup olmadığının test edilmesinde kullanılır. Örnek: Kandaki şeker miktarını düşürmek için hazırlanan bir diyet programının etkinliğini ölçmek için şeker hastalarının diyetten önce kandaki şeker miktarları ile diyetten sonra kandaki şeker miktarlarının farklı olup olmadığını test etmek için kullanılır.

73 Durum 2: Değişik iki ölçüm aracının aynı bireylerde aynı ölçümü yapıp yapmadığını ya da aynı sonucu verip vermediğini test etmek için kullanılır. Örnek: İki ayrı firmanın ürettiği tansiyon ölçme araçlarının aynı kişilerin tansiyonunu aynı değerde ölçüp ölçmediğinin test edilmesinde.

74 Durum 3: Değişik iki ölçümcünün aynı ölçüm aracıyla aynı bireylerin ölçümünü aynı değerde yapıp yapmadıklarının (ölçümcü farklılıklarının) test edilmesinde kullanılır. Örnek: Biri uzman, diğeri acemi olan iki ölçücünün bireylerin vücut yağ yüzdelerini deri kıvrımı kalınlığı yöntemiyle ölçmeleri.

75 İki eş arasındaki farkın anlamlılık testi için aşağıdaki süreç izlenir. 1. Hipotezlerin kurulması: H 0 : İki eş ölçümleri arasında fark yoktur. H 1 : İki eş ölçümleri arasında fark vardır. ya da H0:H1:H0:H1: = 0

76 2. Test istatistiğinin hesaplanması: a) Gözlemlerin önceki değerlerinden sonraki değerleri çıkartılarak fark dizisi oluşturulur. e) Test istatistiği (t hesap ) hesaplanır. b) Farkların ortalaması bulunur: c) Farkların standart sapması bulunur: d) Farkların standart hatası bulunur:

77 3.  Yanılma düzeyi belirlenmesi. 4. İstatistiksel karar: Bulunan t hesap istatistiği, seçilen  yanılma düzeyi ve n-1 serbestlik derecesindeki t tablo istatistiği ile karşılaştırılır. l t hesap l > t tablo ise “iki eş arasında arasında fark yoktur” şeklinde kurulan H 0 hipotezi reddedilir ve p<  yazılır.

78 ÖRNEK: Primer hipertansiyonlu bireylere günde iki kez 20’şer dakikalık yürüyüş önerilerek, yürüyüşe başlamadan önceki 1 haftalık ortalama tansiyon miktarı ile yürüyüşe başladıktan sonraki 1 haftalık ortalama tansiyon miktarları arasında fark olup olmadığı öğrenilmek isteniyor. Aynı bireylerin iki farklı zamandaki ölçümleri söz konusu olduğundan gruplar bağımlıdır.

79 Hasta Sis. Kan Önce Basıncı Sonra Fark Önce-Sonra 114012515 213512015 31501455 4155 0 5145150-5...,..., 3614012020 Ortalama146,86138,168,69 S. sapma 7,06 7,976,18

80 FARK DEĞERLERİNİN HİSTOGRAM GRAFİĞİ

81 H0:H1:H0:H1: = 0 1. Hipotezlerin Kurulması: 2. Test İstatistiğinin Hesaplanması:

82 3. Alfa yanılma düzeyi 0.05 olarak alınmıştır. 4. İstatistiksel karar: p<0,05 Yorum: Yürüyüş sonrasında sistolik kan basıncındaki değişim istatistiksel olarak anlamlıdır.

83 WILCOXON EŞLEŞTİRİLMİŞ İKİ ÖRNEK TESTİ İki eş arasındaki farkın önemlilik testinin varsayımı sağlanamadığında “İki Eş Arasındaki Farkın önemlilik Testi” yerine kullanılabilecek en güçlü testtir.

84 TEST İSTATİSTİĞİNİN HESAPLANMASI Test istatistiğinin hesaplanması incelenen denek sayısının 25’ten az olup olmama durumuna göre ayrı işlemlerle yapılır. A.Denek Sayısı 25’ten Az Olduğunda Test: İşlemleri 1. Her kişinin değerleri önce ve sonra kolonlarına yazılır. 2. İki ölçüm arasındaki farklar (önce - sonra) alınır ve fark kolonuna yazılır. Fark değerlerine işaret dikkate alınmadan küçükten büyüğe doğru sıra numarası verilir ve sıra no sütunu elde edilir.

85 3. Fark dizisinde sıfır değerini alan fark ya da farklar var ise aşağıdaki kurallar uygulanır. a) Fark kolonunda bir tane sıfır var ise: Bu değer değerlendirmeden çıkartılır ve denek sayısı bir azaltılır. b) Fark kolonundaki sıfır sayısı çift ise: Önce sıfırlar sıralanır. Sıfıra karşılık gelen sıra numaralarının ortalaması sıfırların sıra numarası olur sıfırların sıra numarasının yarısına +, yarısına – işareti konur.

86 c) Fark kolonundaki sıfır sayısı tek ise: Sıfırın herhangi bir tanesi değerlendirmeden çıkartılır. Denek sayısı bir azaltılır. Sıra numarası verme ve işaretleme işlemi b maddesindeki gibi yapılır. 4. Fark kolonunda sıfırlar ve aynı değeri alan gözlemler var ise “yeni sıra no kolonu” oluşturulur. 5. Farkların işaretleri sıra numaralarının önüne yazılır ve “işaretli yeni sıra no” sütunu oluşturulur.

87 6. Test istatistiği’nin elde edilmesi: Farklara ilişkin işaretli sıra numaralarından, sayısı az olan işaretin sıra numaraları toplanır ve T istatistiği elde edilir. İstatistiksel karar Hesapla bulunan T değeri T tablo değerinden küçükse H 0 hipotezi reddedilir.

88 B. Denek Sayısı 25 ya da 25’den fazla Olduğunda test İşlemleri z istatistiğinden yararlanılır. Burada, T: A maddesinde bulunan T hesap istatistiği n: Gözlem sayısı

89 İstatistiksel Karar z değerine ilişkin olasılık z tablosundan bulunur ve 0.5’den çıkartılır. H 1 hipotezi tek yönlü ise tablo olasılık değeri ile önceden belirlenen alfa yanılma olasılığı doğrudan karşılaştırılır. H 1 hipotezi çift yönlü ise tablo olasılık değeri 2 ile çarpıldıktan sonra önceden belirlenen alfa yanılma olasılığı ile karşılaştırılır. Tablo olasılık değeri önceden saptanan alfa yanılma olasılığından küçük ise H 0 hipotezi reddedilir.

90 ÖRNEK: 12 bireyin diyet öncesi ağırlıklarının diyet sonrasında değişip değişmediği incelenmek isteniyor. 1. Hipotezler: H o : İki eş arasında fark yoktur H 1 : İki eş arasında fark vardır

91 ÖnceSonraFark Sıralı fark Sıra no Yeni sıra no İşaretli yeni sıra no 6263 011,5-1,5 55505 021,5 68653 134,5 56542144,5 7870854,5-4,5 51 064,5-4,5 56542277,5 61601287,5 666243999 51501410 5554511 61 0 8 12 Wilcoxon Test İstatistiği İçin Hazırlık İşlemleri Tablosu

92 2. Test İstatistiği: “İşaretli yeni sıra no” sütunundan + ve – işaretlerinden az olanların sıra numaraları toplamıdır. Buna göre: T H = 1,5+4,5+4,5=10,5 4. İstatistiksel karar: T Hesap =10,5 < T Tablo = 14, p<0.05 3. Yanılma düzeyinin belirlenmesi: alfa=0.05 alınmıştır. Yorum: Diyetten sonra bireylerin ağırlıklarındaki değişim istatistiksel olarak anlamlıdır.

93 WILCOXON İKİ ÖRNEK TESTİ TABLOSU

94 Aynı örneğin, birey sayısı 25’in üzerindeymiş gibi düşünülüp z değeri yardımıyla çözümü: p = 0,0278 < 0,05

95 Bağımlı Gruplarda İki Yüzde Arasındaki Farkın Anlamlılık Testi Niteliksel bir değişken yönünden, aynı bireylerden iki değişik zaman ya da iki değişik durumda elde edilen iki yüzde arasında fark olup olmadığının araştırılmasında kullanılır.

96 Bağımlı iki yüzde için genel tablo Sonra Önce+-Toplam +aba+b -cdc+d Toplama+cb+d a+b+c+d= n p 1 = (a+b) / n p 2 = (a+c) / n

97 Test İstatistiği: Gözlem sayısı az ise: Gözlem sayısı fazla ise:

98 ÖRNEK: Seminer sonrasıbilgi düzeyi Seminer Öncesi Bilgi Düzeyi YeterliYetersizToplam Yeterli251540 Yetersiz302656 Toplam554196 Öğrencilerin bilgi düzeylerini algılamadaki değişimi

99 1. Hipotezler: H o : Bağımlı İki yüzde arasında fark yoktur H 1 : Bağımlı iki yüzde arasında fark vardır 2. Test istatistiğinin hesaplanması:

100 3. Yanılma düzeyi  = 0,05 alınmıştır. 4. İstatistiksel karar: z=-2,24 için z tablo =0,4875 Buradan çift yönlü p olasılığı: p= 2x(0,5-0,4875)=0,025 (ya da p<0.05) Bağımlı iki yüzde arasında fark vardır. Yorum: Bilgi düzeyi bakımından seminer sonrasında anlamlı bir değişiklik olmuştur.

101 STANDART NORMAL DAĞILIM TABLOSU

102 Bağımlı Gruplarda Ki-kare (McNemar) Testi

103 ÖRNEK: Bir önceki örneği dikkate alırsak: p < 0,05

104 Kİ-KARE TABLOSU


"İKİ ÖRNEKLEM TESTLERİ. BAĞIMSIZ GRUPLARA İLİŞKİN HİPOTEZ TESTLERİ." indir ppt

Benzer bir sunumlar


Google Reklamları