Wilhelm Conrad Röntgen

Slides:



Advertisements
Benzer bir sunumlar
MSGSÜ Felsefe Bölümü 14 Mayıs 2013 Cemsinan Deliduman
Advertisements

Her bir kimyasal element, atom çekirdeği içerisindeki proton sayıları veya atom numarası (Z) ile karakterize edilir. Verilen bir elementin tüm atomlarında.
Heisenberg’ in Belirsizlik İlkesi
X-Işınları ve Bragg Kırınımı
PARÇACIK KİNEMATİĞİ-I
X-ışınları nasıl oluşturulur?
Atomik X-IşInI Spektrometri
Elektromagnetik Radyasyon (Işıma)
Hazırlayanlar Murat Kaya Emel Yıldırım Fevzullah Kurt
RÖNTGEN CİHAZLARI ve FİZİK PRENSİPLERİ 8
Fotoelektrik Etki fotoelektron
Dalton Atom Modeli. Thomson Atom Modeli. Rutherford Atom Modeli. Bohr Atom Modeli.
Çok Elektronlu Atomlar
Bu slayt, tarafından hazırlanmıştır.
ATOM TEORİLERİ.
Konu:4 Atomun Kuantum Modeli
Elektromanyetik Işıma
FEN BİLGİSİ ÖĞRETMENLİĞİ(İ.Ö)
MADDENİN YAPISI VE ATOM
KOLLOİDAL SİSTEMLERDE IŞIK SAÇILMASI
Bohr Atom Teoremi Hipotezine göre; elektronlar sadece belli enerji seviyelerinde bulunabilirler. Her bir düzey çekirdek etrafında belli bir uzaklıkta bulunan.
KATILARDA KRİSTAL YAPILAR
Kuantum Mekaniği.
Çok Elektronlu Atomlar
Atom Modelleri Thomson Modeli Rutherford Modeli Bohr Modeli
Elektromanyetik Işının (Foton) Madde İle Reaksiyonu
Elektrik-Elektronik Mühendisliği için Malzeme Bilgisi
MODERN ATOM MODELİ İstanbul Atatürk Fen Lisesi
X-ışınları 3. Ders Doç. Dr. Faruk DEMİR.
X-ışınları 5. Ders Doç. Dr. Faruk DEMİR.
Işığın Tanecik Özelliği
Elektromanyetik Işının (Foton) Madde İle Reaksiyonu Ders:Gamma-devam
Raman Spektroskopisi.
Atomun yapısı. Spektroskopi. Atom modelleri.
KIMYA.
YÜKLÜ PARÇACIKLARIN MADDE İLE ETKİLEŞİMİ
ATOMUN YAPISI.
X IŞINLARI.
Kuantum Mekaniği.
Atomun Yapısı ATOM MODELLERİ.
DİLAN YILDIZ KİMYA BÖLÜMÜ
Bohr modeli Niels Hanrik Bohr 1911 yılında kendinden önceki Rutherforth Atom Modeli’nden yararlanarak yeni bir atom modeli fikrini öne sürdü. Bohr atom.
Maddenin yapısı ve özellikleri
Raman Spektroskopi.
ATOM.
İYONLAŞMA ENERJİSİ NEDİR?
ATOMUN YAPISI.
IŞIĞIN KUANTALANMASI 1 - KUANTALANMA 2 - PLANCK ve KARACİSİM IŞIMASI
ATOM VE KURAMLARI.
KİMYA -ATOM MODELLERİ-.
GENEL KİMYA DOÇ. DR. AŞKIN KİRAZ
1. Spektroskopi ve Mikroskopi ile Yüzey Analizi
Işık, hem dalga hem de tanecik özelliği gösterir
Bölüm 5 Atom Enerjisinin Kuantalanması
Wilhelm Conrad Röntgen ( )
ELEKTRON DAĞILIMI. ATOMUN YAPISI Hadi kullanacağımız şekli tanıyalım… İlk sayfa döner. İleri Film gösterimi şeklinde sunar. Geri Son sayfaya döner. Sayfa.
Kuantum Teorisi ve Atomların Elektronik Yapısı
Atom Molekül Dersi (Kerem Cankoçak) Bu belgeler ders notları olarak değil, Atom Molekül Ders konularının bir kısmına yardımcı olacak materyeller olarak.
Avusturyalı Fizikçi Erwin Schrödinger, de Broglie dalga denkleminin zamana ve uzaya bağlı fonksiyonunu üst düzeyde matematik denklemi hâline getirmiştir.
Elektromanyetik Dalgalar
Raman Spektroskopisi.
KOLORİMETRE- SPEKTROFOTOMETRE
Yarı İletkenlerin Optik Özellikleri
Quiz 2 Soru 1. FeF2 tetragonal rutil yapıdadır. Örgü parametreleri ise a=0.4697nm ve c= nm’dir. Mol kütleleri Fe= gmol-1 ve F= gmol-1.
Atomik X-Işını Spektrometri
Amaç Kristal içindeki düzlem kavramının öğrenilmesi
Kuantum Teorisi ve Atomların Elektronik Yapısı
NİŞANTAŞI ÜNİVERSİTESİ
GİRİŞ EDS; Enerji Dispersiv Spektrum , SEM, TEM’e eklenmek suretiyle, elementlerin enerjilerinden faydalanarak kantitatif kimyasal analiz yapmakta kullanılır.
LAZERLAZER ADI : İBRAHİM SOYADI: MUSTAFA SINIF: 12/B DERS: FİZİK (Light Amplification by Stimulated Emission of Radiation)
Sunum transkripti:

Wilhelm Conrad Röntgen X-IŞINI X-ışınları 1895 yılında Alman fizikçi Wilhelm Conrad Röntgen tarafından keşfedilmiş ve ne olduğu tam olarak açıklanamadığı için bu isim verilmiştir 1901 yılında Fizik Nobeli kazanmıştır Wilhelm Conrad Röntgen (1845-1923)

X-IŞINI ÖZELLİKLERİ X ışını, görünmeyen, yüksek giriciliğe sahip, görünür ışıktan daha kısa dalgaboylu (yüksek frekanslı) elektromagnetik dalgadır. X-ışınları için dalga boyu aralığı 10-8 - 10-11 m, buna karşılık gelen frekans da 3 × 1016 - 3 × 1019 Hz civarındadır.

X-Işını Enerjisi x-ışını ≈ 10-10 ≈ 1A° E ~104 ev Elektromagnetik ışıma, foton adı verilen enerji paketleri olarak tanımlanır. Fotonun enerjisi, frekansa aşağıdaki formül ile bağlıdır: =Dalgaboyu , ע = Frekans , c = Işık hızı x-ışını ≈ 10-10 ≈ 1A° E ~104 ev

X-Işınlarının Üretilmesi Görünür ışık fotonları ve X-ışını fotonlarının her ikisi de atomdaki elektronların hareketleri sonucunda oluşurlar. Atom çekirdeği etrafındaki elektronlar, farklı enerji seviyeleri (kabuklar) veya orbitallerde bulunurlar. Bir elektron bir alt orbital seviyesine indiği zaman enerjisinin bir kısmını vermesi gerekir; extra enerjisini foton olarak salar. Fotonun enerji seviyesi elektronun ne mesafedeki orbitalden “indiği”ne bağlıdır. Foton salımının bir diğer yolu da yüklerin ivmeli hareketidir. Örneğin hızlandırılan ve aniden yavaşlatılan bir elektron da foton salar.

X-Işınlarının Üretilmesi X-ışınları yüksek hızlı elektronların aniden durdurulmasıyla üretilirler Bir metal hedef üzerine yüksek hızlı elektron gönderilmesi gibi Isıtılan flamandaki elektronlar koparak yayılırlar Serbest hale geçen bu elektronlar uygulanan potansiyel farkı ile metale doğru hızlandırılır Hedef, flamandan daha yüksek potansiyelde tutulur

X-Işını Tübü X-ışınları yüksek vakumlu bir cam hazne içinde oluşturulabilir. Anot ve katot olmak üzere iki adet elektrot mevcuttur. Anot, platin, tunsten gibi yüksek erime noktalı ağır metalden yapılır. Katot ısıtılıp, iki elektrot arasına yüksek bir potansiyel farkı uygulandığında, elektron demetleri (katot ışınları) katottan anoda doğru ivmelenir ve anoda çarptıklarında X-ışınlarını üretirler. Vakumlanmış cam hazne Katot Anot

X-ışını Üretimi : İvmelenen yükler Yüksek hızlı bir elektron çekirdeğin yakınından geçmektedir Çekirdeğin çekim kuvveti sebebiyle elektron yolundan saptırılır Bu bir ivmelenmeye sebep olur İvmelenen bir yük de elektromagnetik ışıma yapar, yani foton salar Hedef atom çekirdeği Saptırılan düşük enerjili elektron Yayılan Foton Gelen Elektron h

X-ışını Üretimi : Orbitaller arası elektron geçişleri Dışarıdan gelen yüksek hızlı bir elektron, yüksek enerjisi sebebiyle atomun “iç yörüngelerindeki” bir elektronu koparıp bu yörüngeden uzaklaştırabilir. Daha yüksek orbitallerde bulunan bir elektron aniden alt seviyeye inerek bu boşluğu doldurur, ekstra enerjisini bir X-ışını fotonu olarak salar.

X-Işını Kristalografisi X-ışınlarının dalgaboyu, 1 Angstrom civarındadır. Bu da bir kristal içindeki atomlar arası mesafe mertebesindedir. Kristallerin atom dizilişlerinin incelenmesinde bu yüzden X-ışınlarına ihtiyaç duyulur

X-Işını Kırınımı X-ışınlarının kristal düzlemleri tarafından kırınıma uğradığı 1912 yılında Laue tarafından gösterildi Kristal üzerine gönderilen sürekli bir X-ışını demeti kristal içinde kırınıma uğrar Kırınıma uğrayan ışıma belirli doğrultularda yoğunlaşır Bu doğrultular kristalin tabakalarından yansıyan dalgalar arasındaki yapıcı girişime karşılık gelir. Kırınım deseni bir fotoğraf filmi üzerine kaydedilir Max von Laue

X-ışını Kırınım Deseninin Örnek Bir Fotoğrafı Aydınlık nokta dizileri Laue desenleri adını alır Kristal yapısı bu noktaların parlaklıkları ve aralarındaki mesafenin analizi ile belirlenir NaCl için kristal yapı aşağıdaki gibidir

X-Işını Kırınımı & Bragg Denklemi İngiliz fizikçileri Sir W.H. Bragg ve oğlu W.L. Bragg, 1913 yılında kristal düzlemlerinden yansıyan X-ışınlarının niçin belirli açılarda gelen X-ışınları için gözlenebildiklerini açıklayan bir bağıntıyı geliştirdiler. Sir William Henry  Bragg (1862-1942), William Lawrence  Bragg (1890-1971) 1915 yılında Nobel ödülü aldılar.

- - - Compton Saçılması - - - (Compton Scattering) 1923 X-ışınları madde ile çarpıştığında bir kısmı saçılmaya uğrar. Saçılan ışıma, gelen ışımadan bir miktar daha düşük frekanslıdır (uzun dalgaboyludur). Dalgaboyundaki değişim, ışımanın saçılma açısına bağlıdır. Arthur H. Compton 1892-1962 Nobel ödülü 1927

Compton Saçılması Compton bir grafit blok üzerine x-ışınları demeti göndererek, saçılan x-ışınlarının gelenlere kıyasla biraz daha uzun dalgaboylu (düşük enerjili) olduklarını gözledi. Dalgaboyundaki (enerji) değişim, Compton kayması olarak isimlendirilir ve x-ışınlarının saçılma açısına bağlıdır. Arthur Holly Compton 1892 – 1962

Compton Saçılması Compton fotonların, elektronla çarpışan diğer parçacıklar gibi davrandıklarını varsaydı. Çarpışmada Enerji ve Momentum korunumludur. Dalgaboyundaki kayma aşağıdaki ifadeyle verilir; Geri tepilen elektron Saçılan foton

Compton Saçılması Compton kayması, saçılma açısına bağlıdır ancak gelen ışınımın dalgaboyuna bağlı değildir. h/mec = 0.00243 nm (görünür ışığa kıyasla çok küçüktür) Compton dalgaboyu olarak isimlendirilir. Saçılan ışımanın dalgaboyu Gelen ışınımın dalgaboyu Işımanın saçılma açısı Elektronun kütlesi

Fotonlar ve Elektromagnetik Dalgalar (Işığın İkili Doğası) Işık (ve bunun yanı sıra tüm diğer EM ışımalar) ikili doğaya sahiptir: Hem dalga hem de parçacık davranışı gösterir. Fotoelektrik olay ve Compton saçılması ışığın parçacık gibi davranışına birer kanıt niteliğindedir. Bir başka deyişle, ışık ve madde etkileştiğinde, ışık sanki parçacıklardan oluşuyormuş gibi davranır. Diğer taraftan girişim ve kırınım yapması, ışığın dalga doğasında da olabildiğinin göstergesidir.

Fotonlar ve Elektromagnetik Dalgalar (Işığın İkili Doğası) ifadelerinin sol tarafındaki enerji ve momentum, ışığın parçacık doğasına, sağ tarafındaki frekans ve dalgaboyu da, ışığın dalga doğasına işaret eder.

Compton Olayı Nedir? Fotoelektrik etki dışında, ışığın kuantumlanmasını gerçekleyen diğer bir olayda Compton olayı olarak adlandırılır. 1922 yılında A. H. COMPTON (1892-1962; Nobel ödülü 1927); Röntgen ışını ve zayıf bağlanmış elektronlu madde arasındaki etkileşimin , ışığın dalga modeliyle açıklanamayacağını göstermiştir. Klasik dalga modeline göre; Röntgen ışını ve madde arasındaki karşılıklı etki sürecinde, sadece madde üzerine gelen Röntgen ışınının dalga boyu gözlemlenebilir.

Compton Olayı Nedir? Ancak yapılan deneyde, asıl ışımanın yanında daha büyük dalga boylu başka bir ışıma daha gözlemlenir. Compton bundan başka, dalga boyundaki değişimin sadece saçılma açısına bağlı olduğunu da tespit etmiştir. Compton bu olayların açıklaması için, madde üzerine gelen Röntgen ışınının (fotonun) dalga boyu değişiminin (ya da frekans değişiminin), ışının maddenin elektronlarıyla karşılıklı etki esnasında oluştuğunu kabul etmiştir. Bu esnada, Röntgen ışını bir miktar enerjisini ve momentumunu elektronlara aktarmaktadır.

Röntgen ışını (fotonlar) ve madde arasındaki karşılıklı etkileşim. Röntgen ışını (fotonlar) ve madde arasındaki karşılıklı etkileşimde, enerji ve momentum korunum yasalarını kullanarak aşağıdaki eşitliklerini yazabiliriz: E foton,i + E elektron,i = E foton,s + E elektron,s p foton,i + p elektron,i = p foton,s + p elektron,s Burada i ve s imleri, enerji ve momentum değerlerinin başlangıç ve son durumlarını ifade etmektedirler. Bu denklemlerden fotonun çarpışmadan önceki dalga boyu ve çarpışmadan sonraki dalga boyu ve saçılma açısı arasındaki ilişki elde edilir

SONUÇ: * Compton olayının bu teorisi bu olayların tek mümkün yorumu değildir. Bilinmektedir ki, elektronlarda dalga paketçiklerine sahiptirler, aynı zamanda bu olayların ışık paketçiği fikri olmaksızın bir dalga teorisi yorumu da akla yakındır. Bundan başka DÖRING 1973 açıklaması da vardır. * Burada ölçüm programı ışımanın dalga boyunu değil, aksine enerjisini gösterir, dalga boyu değişiminin eski formülü yerine enerji değişiminin uygun bir formülü kullanılmalıdır.Daha sonra ile denklemini elde ederiz.

SONUÇ: Işık, fotoelektrik ve Compton olaylarında; şu ana kadar ki bir çok olayda gösterdiği dalga özelliğinin yanında, tanecik özelliğide sergilemektedir. Tıpkı elektronlarda olduğu gibi, ışık da dalga ve tanecik özelliklerini gösteren, ancak tanımlamak istediğimizde yeni bir şey olarak ifade edebileceğimiz, “Kuantum Nesneleri” dir.

Compton saçılması Compton 1923 yılında, Einstein'ın ışık unsurları, sadece ışık frekansına bağlı olarak belirli bir miktarda enerji içeren "nicemlenmiş" olarak kavramsallaştırdığı kanısına vardı "fotonlar" parçacık gibi ivmeli hareket ederek X-ray yıldız kayması açıkladı. Physical Review bir bildiri yayınladı. Compton dalgaboyu ve her dağınık X-ışını (foton) sadece tek bir elektron ile etkileşim olduğunu varsayarak X-ışınları saçılma açısı arasında matematiksel bir ilişki türetilmiştir. Onun türevi ilişkisi doğrulandı.Deneyler rapor ederek sonuca varıyor

Arthur Compton grafit elektronlarına X ışınları göndererek, fotonla elektronun çarpışmasını incelemiştir. Fotonun (ışığın) elektrona çarparak saçılması olayına Compton Olayı denir.

Compton olayında foton elektrona çarptığında yandaki şekildeki gibi saçılmaktadır. Foton dalgalı çizgi ile elektron mavi nokta ile gösterilmişitir. Gelen fotonun doğrultusu kesikli çizgilkerle gösterilmiştir. Saçılan fotunun saçılma açısı Φ harfi ile, saçılan elektronun saçılma açısı θ ile gösterilmiştir.

DİNLEDİĞİNİZ İÇİN TEŞEKKÜRLER…. OKAN KÖROĞLU BERKAN KALACIOĞLU