TERMODİNAMİK KANUNLARI

Slides:



Advertisements
Benzer bir sunumlar
Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ
Advertisements

MADDE ve ISI.
Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI
Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ
Bölüm 2: Akışkanların özellikleri
Bölüm 12 TERMODİNAMİK ÖZELİK BAĞINTILARI
“Tersinir veya tersinmez, bütün çevrimlerde sistem başlangıç durumuna döndüğü için (i=s) sistemin entropi değişimi sıfırdır. Çünkü entropi bir durum fonksiyonudur.
ENERJİ, ENERJİ GEÇİŞİ VE GENEL ENERJİ ANALİZİ
3)Maddenin Tanecikli Yapısı ve Isı
Termodinamiğin Birinci Yasası
Bölüm 8 EKSERJİ: İŞ POTANSİYELİNİN BİR ÖLÇÜSÜ
MADDENİN TANECİKLİ YAPISI VE ISI
Bölüm 3 SAF MADDENİN ÖZELLİKLERİ
SİSMİK- ELEKTRİK YÖNTEMLER DERS-1
Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ
Bölüm 3 SAF MADDENİN ÖZELLİKLERİ
Bölüm 7 ENTROPİ.
HAL DEĞİŞİMLERİ.
Maddenin Tanecikli Yapısı ve Isı
MADDENİN TANECİKLİ YAPISI
Maddenin Tanecikli Yapısı VE Isı
ENERJİ NEDİR ?. ENERJİ NEDİR ? BİR MADDENİN VEYA CİSMİN İŞ YAPABİLME YETENEĞİNE ENERJİ DENİR.
BÖLÜM 13 GAZ KARIŞIMLARI.
Elektrik-Elektronik Mühendisliği için Malzeme Bilgisi
Bölüm 5 HAREKET KANUNLARI
MADDENİN TANECİKLİ YAPISI VE ISI
KİMYASAL TEPKİMELER.
ISI VE SICAKLIK.
Termodinamiğin İkinci Kanunu
Termodinamik. Termodinamiğin 0. ve 1. yasaları. Hess yasası.
BÖLÜM 6 NEWTON’UN YASALARI VE MOMENTUMUN KORUNUMU Doğrusal momentum:
GİRİŞ DİNAMİK’İN TANIMI
Gazlar. Gazların kinetik teorisi. İdeal gaz kanunu.
Kapalı ve Açık Sistemler Arş. Gör. Mehmet Akif EZAN
ISI VE SICAKLIK.
MADDE VE ISI.
ENERJİ.
Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI
Bölüm 8 EKSERJİ: İŞ POTANSİYELİNİN BİR ÖLÇÜSÜ
TERMODİNAMİK Yaşar İSLAMOĞLU
7.SINIF Hazırlayan: Taner BULUT Fen ve Teknoloji Öğretmeni
KAPALI SİSTEMLERİN ENERJİ ANALİZİ
Bölüm 2 ENERJİ, ENERJİ GEÇİŞİ VE GENEL ENERJİ ANALİZİ
Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI
Bölüm 3 SAF MADDENİN ÖZELLİKLERİ
GAZLAR VE GAZ KANUNLARI
Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ
Denge; kapalı bir sistemde ve sabit sıcaklıkta gözlenebilir özelliklerin sabit kaldığı, gözlenemeyen olayların devam ettiği dinamik bir olaydır. DENGE.
Kaynak: Fen ve Mühendislik Bilimleri için
AKIŞKANLARIN STATİĞİ (HİDROSTATİK)
ISI POMPASI HAZIRLAYAN : Birkan KÖK.
Yarı İletkenlerin Optik Özellikleri
Maddenin Tanecikli Yapısı ve Isı
Genel Fizik Ders Notları
BUHAR SIKIŞTIRMALI SOĞUTMA ÇEVRİMİ
MADDENİN ÖZELLİKLERİveTERMODİNAMİK
Motorlarda Termodinamik Çevrimler
Bölüm 7 ENTROPİ.
Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI
MADDENİN HALLERİ MADDENİN KATI HALİ MADDENİN SIVI HALİ
Harun TEKİN KİMYA GAZLAR Harun TEKİN KİMYA
Isı Pompaları ve Uygulamaları
Isı Pompaları ve Uygulamaları
GAZ TÜRBİNLERİ TERMODİNAMİĞİ
ENERJİ. ENERJİ: Bir cismin iş yapabilme yeteneğine enerji denir. -Farklı enerji türleri vardır. - Nükleer enerji Rüzgar enerjisi Isı ve ışık enerjisi.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Prof. Dr. Ali PINARBAŞI Bölüm 6 TERMODİNAMİĞİN İKİNCİ YASASI.
Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ
MADDENİN TANECİKLİ YAPISI ve ISI
MEKATRONİKTE PNÖMATİK VE HİDROLİK SİSTEMLER
Sunum transkripti:

TERMODİNAMİK KANUNLARI BÖLÜM 11 TERMODİNAMİK KANUNLARI Termodinamik enerjinin bilimi olarak tanımlanabilir. Kelime olarak Latince therme (ısı) ve dynamis (güç) sözcüklerinden türemiştir ve eski zamanlardan beri süregelen ısıyı işe dönüştürme çabalarının uygun bir tanımlaması olmaktadır.

Termodinamiğin uygulama alanları arasında güç (elektrik) üretimi, soğutma, maddenin özellikleri arasındaki ilişkiler ve benzerleri sayılabilir.

SICAKLIK Yüksek T Düşük T Sıcaklık atomların sahip olduğu kinetik enerjierinin bir ifadesidir. Yavaş hareket eden atomlar düşük sıcaklığa sahiptirler. Hızlı hareket eden atomlar yüksek sıcaklığa sahiptirler. Yüksek T Düşük T

BASINÇ Basınç birim alana uygulanan kuvvettir. F A Çarpma Ağırlık

YOĞUNLUK Birim hacimdeki kütle miktarıdır. Düşük yoğunluk Yüksek yoğunluk

MADDENİN HALLERİ Katı Sıvı Gaz Plazma

BASINÇ, SICAKLIK ve HAL İLİŞKİSİ Plazma Gaz Buhar Sıvı Katı Tüçlü Tkritik Püçlü Pkritik Basınç Sıcaklık Kritik Nokta Üçlü

GAZ KANUNLARI Boyle kanunu, mükemmel bir gazın sıcaklık ve mol sayısı n sabit kalmak suretiyle, mutlak basıncı P ve hacmi V birbirlerine ters orantılı olduğunu ifade eder. T = sbt n = sbt P1 V1 P2 V2

Charles kanunu, basınç P ve mol sayısı n sabit kalmak şartıyla, hacim V ve mutlak sıcaklık T birbirleriyle doğru orantılı olduğunu açıklar. T1 V1 T2 V2 P = sbt n = sbt

Gay-Lussac kanunu, hacim ve mol sayıları sabit tutulmak şartıyla mutlak basınç ve mutlak sıcaklığın doğru orantılı olduğunu ifade eder. T1 P1 T2 P2 V = sbt n = sbt

Mol orantı kanunu, basınç ve sıcaklık sabit olmak şartıyla, hacim V ve mol sayısı n birbirleriyle doğru orantılı olduğunu açıklar. T = sbt P = sbt n1 V1 n2 V2

Yukarıda belirtilen dört kanun tek bir gaz kanunu olarak ifadelendirilebilir: Burada R evrensel gaz sabitidir.

ISI sıcaklık farkından dolayı gerçekleşen bir enerji akışıdır. Sıcaklık ve ısı birbirlerine karıştırılmamalıdır. İkisi farklı şeylerdir.

ISI GEÇİŞİ ÜÇ YOLLA GERÇEKLEŞİR: İLETİM (CONDUCTION) TAŞINIM (CONVECTION) IŞINIM (RADIATION)

İLETİM, bir maddenin enerjisi daha fazla olan moleküllerinden yakındaki diğer moleküllere, moleküller arasındaki etkileşim sonucundaki enerji geçişidir. İletim katı, sıvı veya gaz ortamlarda gerçekleşebilir. Qiletim = ısı iletim katsayısı Sıcaklık gradyanı ısı geçişine dik alan

Çubuktaki Sıcaklık Profili ISI T = 100oC T = 0oC Bakır atomlarının titreşimi Bakır çubuk

TAŞINIM, katı bir yüzeyle onun temas ettiği akışkan bir ortam arasında gerçekleşen ısı geçişidir. İletimin ve akışkan hareketinin ortak sonucu olarak gerçekleşir. Qtaşınım=hA(Ts-Tf) Akışkanın yüzeyden uzak sıcaklığı Yüzey sıcaklığı Isı taşınım katsayısı Isı geçişinin olduğu yüzey alan

IŞINIM, maddenin atom veya moleküllerinin elektron düzeninde olan değişmeler sonucunda yayılan elektromanyetik dalgalar aracılığıyla gerçekleşen enerji aktarımıdır. İletim ve taşınımdan farklı olarak, ışınımla ısı geçişi cisimler arasında boşluk olması durumunda da vardır.

Qışınım= Qtaşınım Küçük cisim Büyük çevre Çevre sıcaklığı Yüzeyin yayma oranı Sabit Yüzey alanı Yüzey sıcaklığı Çevre sıcaklığı

İŞ için itici kuvvetler Mekanik Kuvvet (Fiziksel) Şaft işi Tork Hidrolik Basınç Elektrik Voltaj Kimyasal Konsantrasyon

MEKANİK İŞ F F D x

(F, x’in bir fonksiyonu değilse) İŞ F-x eğrisi altındaki alana eşittir.

HİDROLİK İŞ Dx P F A DV P = sbt

ENERJİ BİÇİMLERİ Enerji değişikliklere yol açan bir etken olarak tanımlanabilir. Enerji; ısıl, mekanik, kinetik, potansiyel, elektirik, manyetik, kimyasal, nükleer gibi değişik biçimler alabilir; bunların tümünün toplamı, sistemin toplam enerjisini (E) oluşturur.

ENERJİ iş yapma yeteneğidir. İş ise enerjinin bir çeşitidir. Enerji eşdeğerlilikleri: 1 kg kömür 42.000.000 J 1 kg uranyum 82.000.000.000.000 J 1 kg uranyum = 2.000.000 kg kömür

Termodinamik çözümlemede, sistemin toplam enerjisini oluşturan değişik enerji biçimlerini makroskopik ve mikroskopik olarak iki gurupta ele almak yararlı olur.

Makroskopik enerji, sistemin tümünün bir dış referans noktasına göre sahip olduğu enerjidir, kinetik ve potansiyel enerji gibi. Mikroskopik enerji ise, sistemin molekül yapısı ve molekül hareketliliğiyle ilgilidir ve dış referans noktalarından bağımsızdır.

Manyetik, elektrik ve yüzey gerilmesiyle ilişkili enerjiler sadece bazı özel durumlarda önem kazanır. Bu enerjilerin etkisiz olması durumunda, sistemin toplam enerjisi kinetik, potansiyel ve iç enerjilerden oluşur ve, şeklindedir.

ISI KAPASİTESİ Isı kapasitesi C birim kütle başına ısı miktarının (Q) sıcaklık değişimi T’ye bölümü olarak adlandırılır. şeklindedir.

Sabit hacimde ısı kapasitesi Isı Yalıtım Cv

Sabit hacimde tutulan bir malzemeye (katı, sıvı veya gaz) ısı verilmektedir. Bu durumda ısı kapasitesi Cv adını alır. Verilen ısı malzemenin iç enerjisinin, U artmasına neden olur. Bu durumda denklem;

Sabit basınçta ısı kapasitesi m Isı T Cp Sabit basınçta ısı kapasitesi

Sabit basınçta tutulan bir malzemeye (katı, sıvı veya gaz) ısı verilsin. Bu durumda ölçülen ısıl kapasite Cp olarak adlandırılır. Verilen ısı malzemenin iç enerjisinin artmasının yanısıra ağırlığın kaldırılmasını da sağlar. Dolayısıyla PV işi de yapılmış olur. Bu durumda:

Termodinamiğin Sıfırıncı Kanunu İki ayrı cismin bir üçüncü cisimle ısıl dengede olması durumunda, kendi aralarında da ısıl dengede olacaklarını belirtir.

Termodinamiğin Birinci Kanunu Termodinamiğin birinci kanunu veya diğer adıyla enerjinin korunumu ilkesi enerjinin değişik biçimleri arasındaki ilişkileri ve ve genel olarak enerji etkileşimlerini incelemek için sağlam bir temel oluşturur.

Termodinamiğin birinci yasası deneysel gözlemlere dayanarak, enerjinin var veya yok edilemeyeceğini, ancak bir biçimden diğerine dönüşebileceğini vurgular.

Kapalı sistem olarak tanımlanan, belirli sınırlar içinde bulunan sabit bir kütle için termodinamiğin birinci yasası veya enerjinin korunumu ilkesi aşağıdaki gibi ifadelendirilebilir: Q, sistem sınırlarından net ısı geçişini; W, değişik biçimleri kapsayan net işi; E, sistemdeki toplam enerji değişimini ifade eder.

Eg = Kontrol hacmine giren kütlenin toplam enerjisi Kontrol hacmi (kütle akışı olan sistem) için enerjinin korunumu ilkesi aşağıdaki gibi yazılabilir: Eg = Kontrol hacmine giren kütlenin toplam enerjisi Eç = Kontrol hacminden çıkan kütlenin toplam enerjisi EKH = Kontrol hacminin net enerji değişimi

Sürekli akışlı açık sistem için (türbin, lüle, yayıcı, kompresör, vb Sürekli akışlı açık sistem için (türbin, lüle, yayıcı, kompresör, vb.) termodinamiğin birinci yasası: Q – W = m (h + ke + pe )

Termodinamiğin İkinci Kanunu Bir hal değişiminin gerçekleşip gerçekleşmeyeceği ikinci kanunla belirlenir. Termodinamiğin ikinci yasasının kullanımı sadece hal değişimleri yönünü belirlemekle sınırlı değildir. İkinci yasa enerjinin niceliği yanında niteliğini de ön plana çıkarır.

Termodinamiğin ikinci yasasının Kelvin-Planck İfadesi: Termodiamik bir çevrim gerçekleştirerek çalışan bir makinenin sadece bir kaynaktan ısı alıp, net iş üretmesi olanaksızdır.

Termodinamiğin ikinci yasasının Clausius İfadesi: Termodinamik bir çevrim gerçekleştirerek çalışan bir makinenin, başka hiçbir enerji etkileşiminde bulunmadan, düşük sıcaklıktaki bir cisimden ısı alıp yüksek sıcaklıktaki bir cisme ısı vermesi olanaksızdır.

İş kolaylıkla diğer enerji biçimlerine dönüştürlebilir fakat diğer enerji biçimlerini işe dönüştürmek o kadar kolay değildir. İş daima % 100 verimle ısıya dönüştürülebilir. Joule bunu gerçekleştirdiği ünlü deneyi ile göstermiştir

Joule deneyinin şematik görünümü F m x Joule deneyinin şematik görünümü

Isıl enerjinin işe dönüşmesi ısı makineleri aracılığıyla gerçekleşir: 1. Yüksek sıcaklıktaki bir ısıl enerji deposundan ısıl enerji alırlar. Güneş enerjisi, kazan, nükleer reaktör örnek olarak verilebilir. 2. Alınan ısıl enerjinin bir bölümünü genellikle döner mil işine dönüştürürler. 3. Alınan ısıl enerjinin geri kalan bölümünü akarsu, çevre hava gibi düşük sıcaklıktaki bir ısıl enerji deposuna verirler. 4. Isı makinelerinde gerçekleşen hal değişimleri bir çevrim oluşturur.

Isı makinesi ile ısının işe dönüştürülmesi Yüksek sıcaklıkta ısıl enerji deposu Düşük sıcaklıktaki ısıl enerji deposu ISI MAKİNESİ Qgiren Qçıkan Wnet Isı makinesi ile ısının işe dönüştürülmesi

ISI MAKİNESİ Isı makinesi tanımına en çok uyan makine, dıştan yanmalı bir motor olan buharlı güç santralidir. Bu makine dıştan yanmalı olarak adlandırılır, çünkü yanma işlemi makinenin dışında olur ve yakıtın ısıl enerjiye dönüşen kimyasal enerjisi aracı akışkan olan suya ısı olarak geçer.

Buharlı güç santralinin genel çizimi Kazan Türbin Yoğuşturucu Pompa Enerji kaynağı (örneğin kazan) Qgiren Wgiren Wçıkan Enerji kuyusu (örneğin atmosfer) Qçıkan Buharlı güç santralinin genel çizimi

Isıl verim veya, th = Wnet,çıkan / Qgiren Isıl verim; th = 1 - Qçıkan / Qgiren şeklinde de yazılabilir.

Tersinir hal değişimi, bir yönde gerçekleştikten sonra, çevre üzerinde hiçbir iz bırakmadan ters yönde de gerçekleşebilen hal değişimi diye tanımlanır. Tersinir olmayan hal değişimi ise tersinmez hal değişimi diye adlandırılır.

Bir hal değişiminin tersinmez olmasına neden olan etkenlere tersinmezlik adı verilir. Sürtünme, Isı geçişi, Dengesiz genleşme, Elektrik direnci, Kimyasal reaksiyonlar, bu etkenlerdendir.

Tersinir çevrimlere gerçek uygulamalarda rastlanmaz, çünkü gerçek hal değişimlerinde tersinmezlikler yokedilemez. Fakat tersinir bir çevrimin verimi, gerçek çevrimin ulaşabileceği en yüksek verimi belirler. En çok bilinen tersinir çevrim CARNOT ÇEVRİMİ’dir

CARNOT çevrimine göre çalışan kuramsal ısı makinesi ise CARNOT ISI MAKİNESİ diye adlandırılır. CARNOT İLKELERİ Aynı ısıl enerji depoları arasında çalışan tersinmez bir ısı makinesiyle tersinir bir ısı makinesi karşılaştırıldığı zaman, tersinmez ısı makinesinin verimi her zaman tersinir ısı makinesinin veriminden daha az olur. Aynı ısıl enerji depoları arasında çalışan tüm tersinir ısı makinelerinin verimleri eşittir.

Tersinir veya tersinmez bir ısı makinesinin ısıl verimi aşağıdaki gibidir: Tersinir makineler için ısı geçişlerinin oranı mutlak sıcaklıkların oranı ile değiştirilebilir.

Bu bağıntıya Carnot verimi adı verilir Bu bağıntıya Carnot verimi adı verilir. Bu TH ve TL sıcaklıklarındaki ısıl enerji depoları arasında çalışan bir ısı makinesinin sahip olabileceği en yüksek verimdir.

th = th,tersinir tersinir ısı makinesi > th,tersinir olanaksız < th,tersinir tersinmez ısı makinesi th = th,tersinir tersinir ısı makinesi > th,tersinir olanaksız Günümüzde kullanılan iş yapan makinelerin (ısı makinelerinin) büyük çoğunluğunun ısıl verimi % 40’ın altındadır.

Örnek: Carnot ısı makinesi 652˚C sıcaklıktaki bir ısıl enerji deposundan 500 kJ enerji almakta ve 30˚C sıcaklıktaki bir ısıl enerji deposuna ısı vermektedir. a) Carnot makinesinin ısıl verimini, b) düşük sıcaklıktaki ısıl enerji deposuna verilen ısıyı hesaplayın. a) Carnot ısı makinesi aldığı ısıl enerjinin % 67.2’sini işe dönüştürmektedir.

b) QL = 163.8 kJ Böylece Carnot ısı makinesi her çevrimde aldığı 500 kJ enerjinin 163.8 kJ’luk bölümünü düşük sıcaklıktaki ısıl enerji deposuna vermektedir.

Örnek: Bir ısı makinesine kazandan 80 MW ısı geçişi olmaktadır Örnek: Bir ısı makinesine kazandan 80 MW ısı geçişi olmaktadır. Isı makinesinin yakındaki bir akarsuya atık olarak verdiği ısı ise 50 MW’tır. Isı makinesinin net gücünü ve ısıl verimini hesaplayın.

Isı makinesi aldığı ısının % 37.5’ini işe dönüştürmektedir.

SOĞUTMA MAKİNESİ Düşük sıcaklıktaki bir ortamdan yüksek sıcaklıktaki bir ortama ısı geçişi ancak soğutma makinelerinin yardımıyla gerçekleşir. Soğutma makineleri de ısı makineleri gibi bir çevrimi esas alarak çalışır.

Soğutucu akışkan kompresöre buhar olarak girer ve burada yoğuşturucu basıncına sıkıştırılır. Kompresör çıkışında kızgın buhar halinde olan akışkan, yoğuşturucudan çevre ortama ısı vererek soğur ve yoğuşur. Akışkan yoğuşturucudan sonra kılcal borulara girer ve kısılma etkisiyle basıncı ve sıcaklığı büyük ölçüde azalır. Soğutucu akışkan daha sonra buharlaştırıcıda soğutulan ortamdan ısı alarak buharlaşır. Çevrim akışkanın kompresöre girmesiyle tamamlanır.

Bir soğutma sisteminin ana bileşenleri ÇEVRE ORTAM BUHARLAŞTIRICI KOMPRESÖR KISILMA VANASI YOĞUŞTURUCU Wnet,giren SOĞUTULAN ORTAM QL 120 kPa -20 C Bir soğutma sisteminin ana bileşenleri ÇEVRE ORTAM QH 800 kPa 30 C 120 kPa -25 C 60 C SOĞUTULAN ORTAM

Bir soğutma makinesinin verimi etkinlik katsayısı ile ifade edilir ve COPSM gösterilir. Wnet,giren = QH - QL

Örnek: Bir buzdolabının iç ortamından dakikada 360 kJ ısı çekilerek iç ortam 4 ˚C sıcaklıkta tutulmaktadır. Buzdolabını çalıştırmak için gerekli güç 2 kW olduğuna göre, a) buzdoabının etkinlik katsayısını, b) buzdolabından mutfağa olan ısı geçişini hesaplayın. a) b)

Termodinamiğin Üçüncü Kanunu Katı fazında bile moleküller bir nokta etrafında salınım hareketi içindedirler. Salınımlar sıcaklık düştükçe azalır ve mutlak sıfırda moleküller tümüyle hareketsiz olurlar. Bu hal en üst düzeyde bir molekül düzenini ve en alt düzeyde bir enerjiyi belirler.

Bu nedenle, sıfır mutlak sıcaklıkta saf kristal maddenin entropisi sıfırdır, çünkü moleküllerin konumunda herhangi bir belirsizlik yoktur. Bu sonuç termodinamiğin üçüncü kanunu diye bilinir.