KONU: DÜZGÜN ÇOKGENLER ALT ÖĞRENME ALANI: GEOMETRİ SINIF DÜZEYİ:

Slides:



Advertisements
Benzer bir sunumlar
ÇOKGENLER.
Advertisements

ÇEMBERDE AÇILAR.
ÇOKGENLER.
1 . ÜNİTE : GEOMETRİK ŞEKİLLER
DÖRTGENLER.
AÇIKLAMA HAZIRLAYAN.
ÇOKGENLER.
PRİZMATİK YÜZEYLER Düzlemsel bir çokgene dayanan ve bu çokgenin düzlemini tek noktada kesen sabit bir doğruya paralel olarak kayan bir doğrunun oluşturduğu.
Kazanımlar : Geometrik Cisimler
Neler öğreneceğiz? Çokgen kavramını, içbükey ve dışbükey tanımlarını,
Çokgen.
ÇOKGENLER.
ÇOKGENLER Doğrusal olmayan en az üç noktanın ikişer ikişer birleşmesiyle oluşan kapalı şekillere denir.
ÇOKGENLER MURAT GÜNER ÇALIŞINCA OLUYOR…
ÇOKGENLER.
Eşkenar Dörtgenin Özellikleri
MATEMATİK Mızrap Ege Durakoğlu.
Çokgenler ve açıları.
GEOMETRİK ŞEKİLLER.
ÇOKGENLER EŞLİK VE BENZERLİK.
ÇEMBERDE AÇILAR SİTELER ÖĞRENCİ YURDU KÜTAHYA EĞİTİM KOMİSYONU.
ÇOKGENLER.
ÇOKGENLERİ SINIFLANDIRALIM
KARE- DİKDÖRTGEN- DİK ÜÇGEN
Düzgün Çokgenin Özellikleri
KATI CİSİMLERİN ALAN VE HACİMLERİ
GEOMETRİ.
Paralelkenarın Özellikleri
N  3 ve n N olmak üzere düzlemde yalnız A1, A2, A3, … , An noktalarında kesişen ve herhangi ardışık üç noktası doğrusal olmayan [A1A2], [A2A3], …, [An-1An],
Matematik Geometrik Şekiller.
GEOMETRİK ŞEKİLLER.
Hazırlayan: Ebru CANITEZ
ÜÇGENLER Düzlemde birbirine doğrusal olmayan üç noktayı birleştiren, üç doğru parçasının oluşturduğu çokgendir. A,B,C şeklide 3 açı(3 köşe) ve a,b,c şeklinde.
DÜZGÜN ÇOKGENLER ve ÖZELLİKLERİ
Çokgenlerin Sınıflandırılması
ÜÇGENLERDE BENZERLİK.
COKGENLER OSMAN TAYLAN KESER 7/D 2030.
ÇOKGENLER Düzgün çokgenlerin kenar ve açı özelliklerini açıklar
DÖRTGENLERİN ÖZELLİKLERİ
GEOMETRİ.
Çokgenler.
GEOMETRİ.
MERHABA ÇOCUKLAR NE DERSİNİZ ? KONULARIMIZI TEKRAR EDELİM Mİ?
ÇOKGENLER ÇOKGENLER - 2 E R P A D K N B C L M.
DİKDÖRTGEN-KARE KONU ANLATIMI VE SORU ÇÖZÜMLERİ
ÇOKGENLER.
HAZIRLAYAN:Mesut ACAR NO:
PARALELKENAR.
n çift ise n tek ise n çift ise tane
ÇOKGENLER ÇOKGENLER - 1 P K E A D R T M L B C S.
Çokgenleri Tanıyalım.
ÇOKGENLER.
GEOMETRİ ÖZEL DÖRTGENLER.
ÇOKGENLER VE DÖRTGENLER
DÖRTGENLER.
ÇOKGENLER.
ÇOKGENLER DÜNYASINDA YOLCULUĞA ÇIKALIM
HAZIRLAYAN MUHAMMET UĞUZ ÇOKGENLER Dorusal olmayan 3 veya daha fazla noktanın 2 şer 2şer birleştirmek oluşturulan kapalı düzlemsel şekillere.
ÜÇGEN KARE DİKDÖRTGEN.
ÜÇGENLER VE DÖRTGENLER
KARE DİKDÖRTGEN VE ÜÇGEN
KARŞIMDA KARE DİKDÖRTGEN VE ÜÇGEN
ÜÇGENLER VE DÖRTGENLER 1 . ÜÇGENLER 2 . DÖRTGENLER.
ÜÇGENDE AÇILAR.
DÖRTGENLER-ÇOKGENLER
ÜÇGENLER VE DÖRTGENLER
ÇOKGENLER YUNUS AKKUŞ-2012.
ÇOKGENLER YAMUK KARE PARALELKENAR.
Düzgün Çokgenin Özellikleri
KATI(GEOMETR İ K) C İ S İ MLER MATEMATİK PROJE SLAYTI M.AŞKIN ERDOĞAN
Sunum transkripti:

KONU: DÜZGÜN ÇOKGENLER ALT ÖĞRENME ALANI: GEOMETRİ SINIF DÜZEYİ: 7. sINIF

KAZANIMLAR: 1. ÇOKGENLERİN KÖŞEGENLERİNİ, İÇ ve DIŞ AÇILARINI BELİRLER. 2. Düzgün ÇOKGENLERİ İNŞA eder ve ÇİZER.

Ç O K G E N L E R 1.ÇOKGEN Bir düzlemde birbirinden farklı ve herhangi üçü doğrusal olmayan A1, A2, A3,A4 … gibi n tane (n ≥ 3) noktanın ikişer ikişer birleşerek oluşturdukları kapalı şekillere çokgen denir. a. İçbükey (konkav) çokgenler: Kenar doğrularından en az biri; çokgeni bir noktada kesiyorsa bu çokgene içbükey çokgen denir. A A B F D C E C D B İçbükey (konkav) Çokgenler

Ç O K G E N L E R A A B D Dışbükey çokgenler C B C b. Dışbükey (konveks) çokgenler: Kenar doğrularının hiçbiri, çokgeni kesmiyorsa bu çokgenlere dışbükey çokgenler denir. A A B D Dışbükey çokgenler C B C

C. ÇOKGENLERİN ELEMANLARI A, B, C, D, E noktalarına çokgenin köşeleri denir. Komşu iki köşeyi birleştiren [AB], [BC], [CD], [DE] ve [EA] doğru parçaları çokgenin kenarlarıdır. A İç bölgede kenarlar arasında oluşan açılara çokgenin iç açıları denir. c B c İç açılara komşu ve bütünler olan açılara çokgenin dış açıları denir. c E Köşeleri birleştiren kenarlar haricindeki doğru parçalarına köşegen adı verilir. c C c D

Ç O K G E N L E R 2. Dışbükey Çokgenlerin Özellikleri a. İç açılar toplamı: Dış bükey bir çokgenin n tane kenarı var ise iç açılarının toplamı (n - 2) . 180° ‘dir. Üçgen için (3 - 2) . 180° = 180° Dörtgen için (4 - 2) . 180° = 360° Beşgen için (5 - 2) . 180° = 540°

Ç O K G E N L E R b.Köşegenlerin sayısı: n kenarlı dışbükey bir çokgenin köşegen sayısı : n(n-3) Köşegen Sayısı= 2 Örnek: Bir beşgenin kaç tane köşegeni vardır? Çözüm: 5 Kenarlı bir çokgen için formülümüzü kullanırsak, A E B 5.(5-3) = 5 2 D C

Ç O K G E N L E R 3. DÜZGÜN ÇOKGENLER Bütün kenarlarının uzunlukları eşit ve bütün açılarının ölçüleri eşit olan çokgenlere düzgün çokgen denir. A A A B B E D B C C D C Düzgün Beşgen Eşkenar Üçgen Kare

Ç O K G E N L E R a. Şekildeki düzgün altıgende olduğu gibi düzgün çokgenlerin köşelerinden daima bir çember geçer. Bu çembere çevrel çember denir. A B F C E D

|AC|=|FD| |AE|=|AD| Ç O K G E N L E R b. Düzgün çokgenlerde eşit sayıda kenarı birleştiren köşegenler birbirine eşittir. B A B C A F C G D E D F E

Ç O K G E N L E R c. Kenar sayısı çift olan düzgün çokgenlerde karşılıklı kenarlar paraleldir. A B B A C H F C G D E F E D [AF] // [CD], [AB] // [ED], [EF] // [BC] [HG] // [DC], [AB] // [FE]

Ç O K G E N L E R d. Kenar sayısı tek olan düzgün çokgenlerde karşı kenara çizilen dik karşı kenarı ortalar. Köşeden kenarın ortasına çizilen doğru parçası kenara diktir şeklinde de ifade edilir. A A B G B E C F C D E D

Ç O K G E N L E R n.a.r Alan= 2 4. DÜZGÜN ÇOKGENİN ALANI A B F C O r a a. n kenarlı düzgün çokgenin bir kenarı a ve iç teğet yarıçapı r ise alanı: A B n.a.r F C Alan= O 2 r a a E D a

Ç O K G E N L E R a2 3 6 A(ABCDEF)= 4 b. Düzgün altıgenin alanı Düzgün altıgen altı tane eşkenar üçgenden oluşur. Çokgenin bir kenarına a dersek : A B a a a2 3 6 F C A(ABCDEF)= 4 E D a

Ç O K G E N L E R n. R2 sin Alan= 2 360 c. n kenarlı bir düzgün çokgende bir kenarı gören merkez açı ‘dir. Ve çevrel çemberin yarıçapı R ise çokgenin alanı : n A B H C O n. R2 sin Alan= 2 R a R G D F E