Ders Hakkında 1 Yarıyıl içi sınavı 14 Nisan 2014 % 30

Slides:



Advertisements
Benzer bir sunumlar
Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Advertisements

Elektrik Devrelerinin Temelleri Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Hatırlatma Ortogonal bazlar, ortogonal matrisler ve Gram-Schmidt yöntemi ile ortogonaleştirme vektörleri aşağıdaki özeliği sağlıyorsa ortonormaldir: ortogonallik.
Özdeğerler ve özvektörler
Determinant Bir kare matrisin tersinir olup olmadığına dair bilgi veriyor n- boyutlu uzayda matrisin satırlarından oluşmuş bir paralel kenarın hacmine.
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Bir örnek : Sarkaç. Gradyen Sistemler E(x)’in zamana göre türevi çözümler boyunca Gradyen sistemlere ilişkin özellikler Teorem 6: (Hirsh-Smale-Devaney,
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
Eleman Tanım Bağıntıları Direnç Elemanı: v ve i arasında cebrik bağıntı ile temsil edilen eleman v i q Ø direnç endüktans Kapasite memristor Endüktans.
Elektrik Devrelerinin Temelleri dersinde ne yapacağız? Amaç: Fiziksel devrelerin elektriksel davranışlarını öngörme akım ve gerilim Hatırlatma Teori oluşturken.
A1 sistemi A2 sistemi Hangisi daha hızlı sıfıra yaklaşıyor ? Hatırlatma.
Graf Teorisi Pregel Nehri
Ders Hakkında 1 Yarıyıl içi sınavı 16 Nisan 2013 % 22 3 Kısa sınav 12 Mart 9 Nisan 14 Mayıs % 21 1 Ödev % 7 Yarıyıl Sonu Sınavı % 50.
Hatırlatma: Durum Denklemleri
Kararlılık Sıfır giriş kararlılığı Tanım: (Denge noktası) sisteminin sabit çözümleri, sistemin denge noktalarıdır. nasıl belirlenir? Cebrik denkleminin.
1. Mertebeden Lineer Devreler
Maksimum Güç Transferi Teoremi
Zamanla Değişmeyen Lineer Kapasite ve
Lineer, Zamanla değişmeyen 2- Kapılılar Zorlanmış çözüm ile ilgileniyor İlk koşullar sıfır 1- kapılılar için tanımladığımız Thevenin-Norton eşdeğerlerini.
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Özkan Karabacak oda no:2307 tel.
Toplamsallık ve Çarpımsallık Özelliği
3-Fazlı Devreler Neden? Yüksek Gerilim Üç Faz AC- Kaynak
+ + v v _ _ Lineer Olmayan Direnç Bazı Özel Lineer Olmayan Dirençler
2- Jordan Kanonik Yapısı Elemanter işlemler: (1) Satır (Sütun) değiştirme (2) Satır (Sütun)’u bir sabit ile çarpma (3) Satır (Sütun ) toplama Elemanter.
2- Jordan Kanonik Yapısı
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Izhikevich Sinir Hücresinin davranışı Deneysel sonuçModelden elde edilen sonuç E.M. Izhikevich, “Dynamical Systems in Neuroscience”, MIT Press, 2007.
2-Uçlu Direnç Elemanları
Negatif-Pozitif Geribesleme Devreleri Lineer bölgede v in vdvd ioio +vo+vo v in ioio +vo+vo +-+- vdvd.
Devre ve Sistem Analizi
Elektrik Devrelerinin Temelleri
Eleman Tanım Bağıntıları
Elektrik Devrelerinin Temelleri
Elektrik Devrelerinin Temelleri
Devre Fonksiyonu: Özellik: Herhangibir devre fonksiyonunun genliği w’nın çift fonksiyonudur, fazı da her zaman w’nın tek fonksiyonudur. Tanıt: ve Lemma’dan.
Sürekli Sinüsoidal Hal
Eleman Tanım Bağıntıları
İşlemsel Kuvvetlendirici
Eleman Tanım Bağıntıları
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Elektrik Devrelerinin Temelleri
npn Bipolar Tranzistör Alçak Frekanslardaki Eşdeğeri
Seri ve Paralel 2-uçlu Direnç Elemanlarının Oluşturduğu 1-Kapılılar
Hatırlatma: Durum Denklemleri
Hatırlatma: Kompleks Sayılar
1-a) Şekildeki devrede 5 Gauss yüzeyi belirleyin ve KAY yazın.
Sistem Özellikleri: Yönetilebilirlik, Gözlenebilirlik
Elektrik Mühendisliğinde Matematiksel Yöntemler
+ + v v _ _ Hatırlatma Lineer Olmayan Direnç
Teorem 2: Lineer zamanla değişmeyen sistemi
_ _ Bazı Lineer 2-kapılı Direnç Elemanları
Çok-Uçlu Direnç Elemanları
Ders Hakkında 1 Yarıyıl içi sınavı 11 Nisan 2010 % 26
Maksimum Güç Transferi Teoremi
Hatırlatma * ** ***.
Spektral Teori ters dönüşümler bunların genel özellikleri ve asıl
Lineer olmayan 2-kapılı Direnç Elemanları
Akım kontrollü gösterimini elde ediniz
KAY ve KGY toplu parametreli devrelerde geçerli
_ _ _ DC Çalışma Noktası Çözüm i tek çözüm çok çözüm + çözüm yok N Is
Lemma 1: Tanıt: 1.
Laplace dönüşümünün özellikleri
Diferansiyel denklem takımı
Ön bilgi: Laplace dönüşümü
3-Fazlı Devreler Neden? Yüksek Gerilim Üç Faz AC- Kaynak
Bazı Doğrusal Olmayan Sistemler
İşlemsel Kuvvetlendirici
Sunum transkripti:

Ders Hakkında 1 Yarıyıl içi sınavı 14 Nisan 2014 % 30 3 Kısa sınav 3 Mart 24 Mart 5 Mayıs % 30 1 Ödev ve küçük sorular +10 Yarıyıl Sonu Sınavı % 40 Ders notlarına ve ders ile ilgili bazı dökümanlar erişmek için Ninova – ELE 232 - Dersin kaynakları http://ninova.itu.edu.tr/tr/dersler/elektrik-elektronik-fakultesi/1229/ele-232/ekkaynaklar?g326261 http://ninova.itu.edu.tr/tr/dersler/elektrik-elektronik-fakultesi/4647/ehb-232/ekkaynaklar?g469199 FİNAL SINAVINA GİRMEYE HAK KAZANMAK İÇİN YARIYIL İÇİ DEĞERLENDİRMELERİNDEN EN AZ 15 ALMAK GEREKMEKTEDİR. YILSONU DEĞERLENDİRMESİNDE 30 ALTINDAKİ NOTLAR FF OLARAK DEĞERLENDİRİLECEKTİR:

2- Jordan Kanonik Yapısı Elemanter işlemler: (1) Satır (Sütun) değiştirme (2) Satır (Sütun)’u bir sabit ile çarpma (3) Satır (Sütun ) toplama Elemanter işlemler sonucunda rank değişmez. Hatırlatma Benzerlik dönüşümü ile matris özel bir yapıya getirilecek

Dönüşümü nasıl belirleyeceğiz? P’nin sütunları özvektörlerden oluşuyor 1) özdeğerler katsız: sağlayan ‘ler belirlenecek 2) özdeğerler m katlı: m tane özvektör bulunmalı ise m tane lineer bağımsız özvektör (1)’deki gibi bulunur. ise m tane lineer bağımsız özvektör genelleştirilmiş özvektör hesaplanarak bulunur.

Ön bilgi: Laplace dönüşümü Tanım: için sürekli ya da parça parça sürekli bir fonksiyon olsun, koşulunu sağlıyorsa ‘nin Laplace dönüşümü aşağıdaki bağıntı ile tanımlanır: Pierre-Simon, marquis de Laplace 1749-1827 ile ‘nin Laplace dönüşümünü ile ters Laplace dönüşümünü belirteceğiz

Laplace dönüşümünün özellikleri 1- Teklik 2- Lineerlik ve sabit büyüklük olmak üzere Tanıt:

3- Tanıt: ‘yi hesaplayalım

4- Tanıt:

5- Tanıt:

6- Tanıt:

7- Tanıt:

Konvolüsyon İntegrali 8- Konvolüsyon İntegrali Neye karşılık düşüyor? L.O. Chua, C.A. Desoer, S.E. Kuh. “Linear and Nonlinear Circuits” Mc.Graw Hill, 1987, New York

Lineer zamanla değişmeyen sistemlerde girişine karşılık çıkışı nasıl belirlenir? süreç giriş çıkış impulse yanıtı

Ön bilgi: Ters Laplace dönüşümü Tablo ve özelliklerden yararlanarak ters Laplace dönüşümü hesaplanır http://en.wikipedia.org/wiki/Laplace_transform

Laplace Dönüşümünden Faydalanarak Öz Çözümün Bulunması

Öz çözümü belirleyiniz.