Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron)

Slides:



Advertisements
Benzer bir sunumlar
Unsupervised Learning (Kümeleme)
Advertisements

Baz Değişimi Bir sorun için uygun olan bir baz, bir diğeri için uygun olmayabilir, bu nedenle bir bazdan diğerine değişim için vektör uzayları ile çalışmak.
Çok Katmanlı Yapay Sinir Ağı Modelleri
İlk Yapay Sinir Ağları.
Yapay Sinir Ağları Artificial Neural Networks (ANN)
Yrd. Doç. Dr. Ayhan Demiriz
NEURAL NETWORK TOOLBOX VE UYGULAMALARI
BİYOİNFORMATİK NEDİR? BİYOİNFORMATİKTE KULLANILAN SINIFLAMA YÖNTEMLERİ
YAPAY SİNİR AĞLARI VE BAYES SINIFLAYICI
Giriş Dikkat Altsistemi Yönlendirme Altsistemi Kısa Süreli Bellek Uzun Süreli Bellek Kontrol Birimi Kontrol Birimi F1 F2 ART nasıl çalışıyor? Mete Balcı,
Yapay Sinir Ağları (YSA)
Bulanık Mantık Kavramlar:
Sayısal Analiz 7. Hafta SAÜ YYurtaY.
Yapay Sinir Ağları (YSA)
Yapay Sinir Ağları (Artificial Neural Networks) Bir Yapay Sinir Ağı Tanımı (Alexander, Morton 1990) Yapay sinir ağı, basit işlemci ünitelerinden oluşmuş,
Geçen hafta anlatılanlar Değişmez küme Değişmez kümelerin kararlılığı Bildiğimiz diğer kararlılık tanımları ve değişmez kümenin kararlılığı ile ilgileri.
V2’nin q1 doğrultusunda ki bileşenine
Çıkış katmanındaki j. nöron ile gizli katmandaki i. nörona ilişkin ağırlığın güncellenmesi Ağırlığın güncellenmesi Hangi yöntem? “en dik iniş “ (steepest.
n bilinmeyenli m denklem
Devre ve Sistem Analizi Neslihan Serap Şengör Elektronik ve Haberleşme Bölümü, oda no:1107 tel no:
BİYOMEDİKAL MÜHENDİSLİĞİNDE İLERİ KONULAR Neslihan Serap Şengör Oda no: 1107 Tel:
Devre ve Sistem Analizi
Devre ve Sistem Analizi Neslihan Serap Şengör Devreler ve Sistemler A.B.D. oda no:1107 tel no:
Verilen eğitim kümesi için, ortalama karesel hata ‘yı öğrenme performansının ölçütü olarak al ve bu amaç ölçütünü enazlayan parametreleri belirle. EK BİLGİ.
YAPAY SİNİR AĞLARI.
(Competitive Learning)
A1 sistemi A2 sistemi Hangisi daha hızlı sıfıra yaklaşıyor ? Hatırlatma.
Hatırlatma: Durum Denklemleri
Dinamik Yapay Sinir Ağı Modelleri Yinelemeli Ağlar (recurrent networks) İleri yolGeri besleme.
Uyarlanabilir Yankılaşım Teorisi (Adaptive Resonance Theory- Grossberg ) A crucial metatheoretical.
Momentum Terimi Momentum terimi Bu ifade neyi anımsatıyor? Lineer zamanla değişmeyen ayrık zaman sistemi HATIRLATMA.
ISIS IRIR ITIT Z=10e -j45, 3-fazlı ve kaynak 220 V. I R, I S, I T akımları ile her empedansa ilişkin akımları belirleyin.
Toplamsallık ve Çarpımsallık Özelliği
Devre Denklemleri: Genelleştirilmiş Çevre Akımları Yöntemi
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron)
Düğüm-Eyer dallanması için ele alınan ön-örneğe yüksek mertebeden terimler eklense davranışı yapısal olarak değişir mi? Bu soru neden önemli Lemma sistemi.
Doğrusal Olmayan Devreler, Sistemler ve Kaos Neslihan Serap Şengör oda no:1107 tel no: Müştak Erhan Yalçın oda no:2304.
F(.) y[n+1] Giriş Vektörü Giriş-Çıkış Eşleme Fonksiyonu Çıkış Mahmut Meral, Lisans Bitirme Ödevi, 2003 Giriş – Çıkış Modeline göre Dinamik Sistem Tanıma.
Ayrık Zaman Hopfield Ağı ile Çağrışımlı Bellek Tasarımı Kullanılan Hücre Modeli: McCulloch-Pitts Eksik birşey var!! Örüntüler: 1. Aşama: Belleğin Oluşturulması.
Izhikevich Sinir Hücresinin davranışı Deneysel sonuçModelden elde edilen sonuç E.M. Izhikevich, “Dynamical Systems in Neuroscience”, MIT Press, 2007.
Doğrusal Olmayan Devreler, Sistemler ve Kaos
Biz şimdiye kadar hangi uzaylar ile uğraştık:
“Bilgi”’nin Gösterimi “Bilgi” İnsan veya Makina Yorumlama Öngörme Uygun yanıt verme Depolanmış enformasyon veya model Kurallar: (1) Benzer sınıflardan.
İSTANBUL TEKNİK ÜNİVERSİTESİ ♦ ELEKTRONİK & HABERLEŞME MÜHENDİSLİĞİ Öğrenme nasıl gerçekleşiyor? Ağırlıklar hatayı en azlıyacak şekilde güncelleniyor Öğrenme.
Geriye Yayılım Algoritması
Yapay sinir ağı, basit işlemci ünitelerinden oluşmuş, çok
Lineer cebrin temel teoremi-kısım 1
(Self-Organizing Map- Kohonen )
Dinamik Sistem Dinamik sistem: (T, X, φt ) φt : X X a1) φ0=I
YAPAY SİNİR AĞLARININ YAPISI VE TEMEL ELEMANLARI
h homeomorfizm h homeomorfizm h 1-e-1 ve üstüne h sürekli h
Geriye Yayılım Algoritması (Back-Propagation Algorithm)
Özdeğerler, Sıfırlar ve Kutuplar
Dinamik Yapay Sinir Ağı Modelleri
İlk olarak geçen hafta farklı a değerleri için incelediğiniz lineer sisteme bakalım: MATLAB ile elde ettiğiniz sonuçları analitik ifade ile elde edilen.
ART nasıl çalışıyor? Giriş Dikkat Altsistemi Yönlendirme Altsistemi F2
Geçen hafta ne yapmıştık
Hatırlatma bu durumda ne olacak? Boyuta dikkat!!
Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron)
Teorem 2: Lineer zamanla değişmeyen sistemi
Sinir Hücresi McCulloch-Pitts x1 w1 x2 w2 v y wm xm wm+1 1 '
Hopfield Ağı Ayrık zaman Sürekli zaman
Sistem Özellikleri: Yönetilebilirlik, Gözlenebilirlik
Hatırlatma Yörünge: Or(xo)
EK BİLGİ Bazı Eniyileme (Optimizasyon) Teknikleri Eniyileme problemi
Sistem Özellikleri: Yönetilebilirlik, Gözlenebilirlik ve Kararlılık
S. Haykin, “Neural Networks- A Comprehensive Foundation”,
Yapay Zeka Nadir Can KAVKAS
Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron)
Sunum transkripti:

Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron) Teorem: (Kolmogorov 1957) ‘e bağlı olmayan monoton artan sürekli tek değişkenli fonksiyon sürekli tek değişkenli fonksiyon

Teoremin sonuçları..... Kolmogorov Teoremi bir varlık teoremi ‘i özel bir şekilde ifade edebileceğimizi söylüyor. ve ‘nin ne yapıda olduklarını ve kaç tanesinin yeterli olacağını söylüyor. Kolmogorov Teoremi bir varlık teoremi olduğundan nasıl belirlenir söylemiyor. Kolmogorov Teoreminde bazı şeylerden vazgeçelim; tam olmasın yaklaşık olsun ama fonksiyonları bilelim. Teorem: (Cybenko 1989) yeterince büyük herhangi bir sürekli sigmoid fonksiyon

İleri Yol Ağı ve Eğiticili Öğrenme Giriş vektörü Çıkış vektörü Gizli katmanlar Çıkış katmanı

Çok Katmanlı Algılayıcı-ÇKA (Multi-Layer Perceptron) Ağ yapısı Giriş Gizli katman 1 Gizli katman 2 Çıkış giriş katmanı işlem yapan gizli katmanlar işlem yapan çıkış katmanı Nöron sürekli türetilebilir, lineer olmayan aktivasyon fonksiyonu var Eğitim eğiticili öğrenme Öğrenme algoritması geriye yayılım http://www.oscarkilo.net/wiki/images/8/84/Ffperceptron.png

- + Gizli katman ve çıkış katmanındaki her nöron iki iş yapıyor: (i) nöron çıkışındaki işareti nöron girişindeki işaretler cinsinden hesaplıyor, (ii) gradyen vektörünü geriye yayılım için yaklaşık olarak hesaplıyor

Geriye Yayılım Algoritması (Back-Propagation Algorithm) Verilenler: Eğitim Kümesi Hesaplananlar: Eğitim Kümesindeki l. çifte ilişkin çıkış katmanındaki j. nörondaki hata Nöron j için ani hata: Toplam ani hata: Neden sadece çıkış katmanı? Ortalama karesel hata: Ağdaki hangi büyüklüklere bağlı? Verilen eğitim kümesi için, ortalama karesel hata ‘yı öğrenme performansının ölçütü olarak al ve bu amaç ölçütünü enazlayan parametreleri belirle.

Yapılan: yerine ‘yi en azlamak Eğitim kümesindeki k. veri için ileri yolda hesaplananı yazalım: 1. Gizli Katman Çıkışı 2. Gizli Katman Çıkışı

Eğitim kümesindeki k. veri için hesaplanan toplam ani hata

Ağırlığın güncellenmesi “en dik iniş “ (steepest descent) Çıkış katmanındaki j. nöron ile gizli katmandaki i. nörona ilişkin ağırlığın güncellenmesi Hangi yöntem? Ağırlığın güncellenmesi “en dik iniş “ (steepest descent)

Notasyona Dikkat!!!!! k eğitim kümesindeki kaçıncı veri olduğu aynı zamanda güncellemede bir iterasyon içinde kaçıncı defa güncellendiği çıkış katmanında j. nöron çıkışı gizli katmandaki i. nöron çıkışı Çıkış katmanı Yeni notasyon Gizli katmanın sayısı

Gizli katman ve çıkış katmanındaki her nöron iki iş yapıyor: (i) nöron çıkışındaki işareti nöron girişindeki işaretler cinsinden hesaplıyor, (ii) gradyen vektörünü geriye yayılım için yaklaşık olarak hesaplıyor Yerel gradyen

Çıkış katmanındaki tüm ağırlıkların güncellenmesi

gizli katman (gks-1)’deki j. nöron ile gizli katman (o)’daki i. nörona ilişkin ağırlığın güncellenmesi

Tanıdık birşeyler arayalım ilgilenilen ağırlığının toplam ani hataya etkisi Tanıdık birşeyler arayalım

Yerel gradyen

Herhangi bir gizli katmandaki yerel gradyen Gizli katmanındaki tüm ağırlıkların güncellenmesi Herhangi bir gizli katmandaki yerel gradyen

Geriye Yayılım Algoritması Bazı İpuçları Öğrenme Hızı Öğrenme hızını belirleyen büyüklük küçük ağırlıklardaki değişim bir iterasyondan diğerine küçük olacağı için, ağırlık uzayında düzgün bir değişim gözlenecek öğrenme yavaş olacak büyük öğrenme hızlanacak salınım oluşacağından yakınsama mümkün olmayabilir Hızı artıralım ama salınım da olmasın. Bu mümkün mü?

Momentum Terimi HATIRLATMA Momentum terimi Bu ifade neyi anımsatıyor? Lineer zamanla değişmeyen ayrık zaman sistemi HATIRLATMA

Bu sistemin çözümü nereye gidiyor? A matrisinin özdeğerleri birim daire içinde ise girişin belirlediği değere A matrisinin özdeğerleri birim daire üstünde ise salınım yapan bir sistem A matrisinin özdeğerleri birim daire dışında ise sonsuza hatırlatmanın sonu Momentum terimi varken güncellemede ne oluyor ona bakalım

Ardışık iterasyonlarda aynı işaretli ise ‘nın genliği büyüyecek, ağırlıklardaki değişim büyük olacak. Ardışık iterasyonlarda farklı işaretli ise ‘nın genliği azalacak, ağırlıklardaki değişim küçük olacak Momentum teriminin gradyenin işaretinin değiştiği doğrultularda kararlı kılma etkisi var.

S. Haykin, “Neural Networks- A Comprehensive Foundation”, 2nd Edition, Prentice Hall, 1999, New Jersey.

S. Haykin, “Neural Networks- A Comprehensive Foundation”, 2nd Edition, Prentice Hall, 1999, New Jersey.

S. Haykin, “Neural Networks- A Comprehensive Foundation”, 2nd Edition, Prentice Hall, 1999, New Jersey.

Adaptif Öğrenme Hızı

Grup-Veri Uyarlamalı Eğitim “sequential mode” “on-line mode” “ pattern mode” “stochastic mode” Grup Uyarlamalı Eğitim “batch mode” Eğitim kümesindeki her örüntü ağa uyarlandıktan sonra ağırlıklar değiştiriliyor Eğitim kümesindeki tüm örüntüler ağa uyarlandıktan sonra ağırlıklar değiştiriliyor

Grup Uyarlamalı Veri uyarlamalı Amaç Ölçütü Her bağlantı için gereken bellek Örüntülerin ağa sunuluşu Algoritmanın yakınsaması Paralelliğin sağlanması Eğitim kümesinin fazlalıklı olması Algoritmanın basitliği Büyük boyutlu ve zor problemlerde etkin çözüm sağlanması

Geriye Yayılım Algoritmasının Yakınsaması Genlikte Ayrık Algılayıcıdaki gibi yakınsaması garanti değil. Ne zaman durduracağız? Kramer+Sangionanni-Vincentelli (1989) Çapraz değerlendirme (cross-validation) Eğitim Kümesi Yaklaşıklık Kümesi (estimation subset) Değerlendirme Kümesi (validation subset)

S. Haykin, “Neural Networks- A Comprehensive Foundation”, 2nd Edition, Prentice Hall, 1999, New Jersey.