Yeşilköy Anadolu Lisesi. TANıM (KONUYA GIRIŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden.

Slides:



Advertisements
Benzer bir sunumlar
Kofaktör Matrisler Determinantlar Minör.
Advertisements

POLİNOMLAR TANIM: P(x)=anxn+an-1xn a2x2+a1x+a0 biçimindeki ifadelere reel katsayılı bir bilinmeyenli polinom denir. anxn, an-1xn-1, ... , a1x+a0.
KARMA Ş IK SAYILAR Derse giriş için tıklayın... A. Tanım A. Tanım B. i nin Kuvvetleri B. i nin Kuvvetleri C. İki Karmaşık Sayının Eşitliği C. İki Karmaşık.
TAM SAYILAR.
Cebirsel İfadeler’ de Toplama İşlemi
DOĞRUSAL ZAMANLA DEĞİŞMEZ SİSTEMLERDE FARK DENKLEMLERİ
MATEMATİK KÖKLÜ İFADELER.
Prof. Dr. Halil İbrahim Karakaş
ÖZEL TANIMLI FONKSİYONLAR
Bölüm 8: EĞRİ UYDURMA Fizikte laboratuarda yapılan deneysel ölçümlerin ne kadar hata payı içerdiğini, veya belli teorik modellere ne kadar uyduğunu bilmek.
Birinci Dereceden Denklemler
1 ÖMER ASKERDEN EMLAK KREDİ İLKÖĞRETİM OKULU UZMAN MATEMATİK ÖĞRETMENİ AKSARAY ÜNİTE: HARFLİ İFADELER VE DENKLEMLER KONU:HARFLİ İFADELERİ ÇARPANLARA AYIRMA.
Batuhan Özer 10 - H 292.
ÇARPANLARA AYIRMA.
BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER
TBF Genel Matematik I DERS – 1 : Sayı Kümeleri ve Koordinatlar
MATRİSLER ve DETERMİNANTLAR
1.Dereceden 1 Bilinmeyenli Denklemler
KESİRLİ FONKSİYONLARIN GRAFİKLERİ
DERS 2 MATRİSLERDE İŞLEMLER VE TERS MATRİS YÖNTEMİ
2.DERECE DENKLEMLER TANIM:
MATRİS-DETERMİNANT MATEMATİK.
HER ÖĞRENCİ MATEMATİK ÖĞRENEBİLİR MURAT GÜNER ATAŞEHİR
BİRİNCİ DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER
Ders : MATEMATİK Sınıf : 8.SINIF
DENKLEMLER. DENKLEMLER ÜNİTE BAŞLIĞI X kimdir neye denir,neden gereksinim duyulmuştur.Bilinmeyeni denklem kurmada kullanırız.Bilinmeyen problemlerde.
Birinci Dereceden Denklemler
İLKÖĞRETİM MATEMATİK 7.SINIF
CEBİRSEL İFADELERİ ÇARPANLARINA AYIRMA
DERSİMİZİ ŞU ANA BAŞLIKLAR HALİNDE İNCELEYECEĞİZ.
CEBİRSEL İFADELER.
MATEMATİK ÖĞRENEBİLİR
ÇARPANLARA AYIRMA Bu power point projesi çarpanlara ayırma metodları
MATEMATİK ÖĞRENEBİLİR
CEBİRSEL İFADELERİ ÇARPANLARINA AYIRMA
ÇARPANLARA AYIRMA.
EŞİTLİK ve DENKLEM.
ÖZDEŞLİK b x x b a y a y a 8.Sınıf Aşağı yön tuşu ile ilerleyiniz.
İKİNCİ DERECEDEN DENKLEMLER
İLKÖĞRETİM MATEMATİK 6.SINIF
MATEMATİK 1 POLİNOMLAR.
Yrd. Doç. Dr. Mustafa AKKOL
MATEMATİK DERSİ KONU : DENKLEM ÇÖZME SEMİH YAŞAR
İSMAİL EKSİKLİ Öğr. No:
Öğretmenin; Adı Soyadı :
Çarpanlara Ayırma.
KARMAŞIK SAYILAR.
KARMAŞIK SAYILAR.
DİERANSİYEL DENKLEMLER
KAREKÖKLÜ SAYILAR.
İLKÖĞRETİM MATEMATİK 8.SINIF
9. SINIF MATEMATİK DERSİ ÖĞRENME ALANI:CEBİR BÖLÜM :SAYILAR
TAM SAILAR İÇİNDEKİLER TAM SAYI KAVRAMI MUTLAK DEĞER
MATEMATİK DENKLEMLER.
Sayısal Analiz Sayısal Türev
İKİNCİ DERECEDEN DENKLEMLER
KOORDİNAT SİSTEMİ.
ÜSLÜ SAYILAR.
ÇARPANLARA AYIRMA Konular Örnekler.
Günay DOĞU Şefika AKMAN Emel GÖLGE B.Görkem ŞAHİN
KOORDİNAT SİSTEMİ.
Diziler.
TAM SAYILAR.
2 Birinci Mertebeden Adi Diferansiyel Denklemler
NİŞANTAŞI ÜNİVERSİTESİ
DERSİMİZİ ŞU ANA BAŞLIKLAR HALİNDE İNCELEYECEĞİZ.
DERSİMİZİ ŞU ANA BAŞLIKLAR HALİNDE İNCELEYECEĞİZ.
DERSİMİZİ ŞU ANA BAŞLIKLAR HALİNDE İNCELEYECEĞİZ.
Türkiye’nin Sunu/Slayt Paylaşım Sitesi
Sunum transkripti:

Yeşilköy Anadolu Lisesi

TANıM (KONUYA GIRIŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi doğrulayan x sayılarına denklemin kökleri; tüm köklerin oluşturduğu kümeye denklemin çözüm kümesi; çözüm kümesini bulmak için yapılan işlemlere denklem çözme; a, b, c sayılarına da denklemin kat sayıları denir.

ÇÖZÜM KÜMESININ BULUNMA YÖNTEMLERI: 1) Ortak Çarpan Parantezine Alma: Terimlerin her birinde ortak olan ifadelerin alınıp ifadeyi çarpan durumuna getirmektir. örnek: ax + bx + cx = x (a + b +c) örnek: 3 (a-b). c – 6 (a-b). d = 3 (a-b). (c-2d)

2) Gruplandırarak Çarpanlara Ayırma: Terimler çarpanlara ayrılırken grup, grup alınarak çarpanlarına ayrılır. örnek: ax – by + aj/ – bx = a (x +y) -b (x+y) = (a – b). (x + y) (gruplandırmada ortak çarpana getirildiğine dikkat ediniz.) örnek: a2 + ab + bc + ac = a (a + b) + c (a + b) =(a + c). (a + b) örnek: 2ax – 4ay – x + 2y = 2a (x – 2y) – (x – 2y) = (x-2y).(2a-1) 3) İki Kare Farkı: İki terimden oluşmalı, terimler arasındaki işaret (-) ve terimlerin karekökleri olmalıdır. örnek: 81 x2 – 16 = (9x – 4). (9x + 4) örnek: 1 – 25a2 = (1 – 5a). (1 + 5a)

4) İki Küp Toplam ve Farkı: örnek: a 3 + b 3 = (a + b). (a 2 – ab + b 2 ) örnek: 1-27x 3 = 1 3 – (3x) 3 = (1-3x). (1 + 3x + 9x 2 ) 5) Tamkareli İfadeler: a 2 + 2ab + b 2 = (a + b) 2 = (a + b). (a + b) örnek: x \ = (x + i) 2 = (x +1). (x + 1)

6) Ax2 + Bx + c Şeklindeki Üç Terimli İfadeler: Birinci ve üçüncü terimlerin çarpanları alt alta yazılarak çapraz çarpıldığından sonra toplanır. Toplamın sonucu orta terimi veriyorsa karşılıklı olarak terimler alınıp çarpım durumunda yazılır. örnek: x2 – x – 2 = (x – 2). (x + 1)

DISKIRIMINANTı KULLANıLARAK ÇÖZÜM KÜMESI BULMA YÖNTEMLERI: ax 2 + bx + c = 0 denkleminin sol tarafı kolayca çarpanlara ayrılamayabilir. Bu durumda, ikinci dereceden bir bilinmeyenli denklemin çözümü için genel bir yaklaşıma ihtiyaç vardır. ax 2 + bx + c = 0 denkleminde,  = b 2 – 4ac ifadesine, denklemin Diskiriminantı denir.

1) D > 0 ise denklemin farklı iki reel kökü vardır. Bu kökler,

3) D < 0 ISE DENKLEMIN REEL KÖKÜ YOKTUR. BU DURUMDA DENKLEMIN KARMAŞıK IKI FARKLı KÖKÜ VARDıR. 2)  = 0 ise denklemin eşit iki reel kökü vardır. Bu kökler,

İKİNCİ DERECEDEN BİR DENKLEME DÖNÜŞEBİLEN DENKLEMLERİN ÇÖZÜM KÜMESİNİN BULUNMASI Yardımcı Bilinmeyen Kullanılarak Çözülebilen Denklemlerin Çözümü Verilen denklemde benzer ifadeler yeniden adlandırılarak denklem basitleştirilir. Örneğin x 4 – 10x = 0 denkleminde x 2 = t, 2 2x – 6  2 x + 8 = 0 denkleminde 2 x = u, gibi Köklü Denklemlerin Çözümü Bir denklemde bilinmeyen, kök içinde bulunuyorsa bu denkleme köklü denklem denir. Denklemde köklü terim bir tane ise, köklü terim eşitliğin bir tarafında yalnız bırakılır. Sonra kökün derecesine göre kuvvet alınır. Gerekli işlemler yapılarak denklem çözülür. Bulunan köklerden köklü terimi tanımsız yapmayanlar alınır.

İKİNCİ DERECEDEN BİR DENKLEMİN KÖKLERİ İLE KAT SAYILARI ARASINDAKİ BAĞINTILAR ax 2 + bx + c = 0 denkleminin kökleri x 1 ve x 2 ise,

2. DERECEDEN EŞITSIZLIKLER KıSACA KONU ANLATıMı ax 2 +bx+c>0 (ya da büyük eşit sıfır) ax 2 +bx+c<0 (ya da küçük eşit sıfır) şeklinde ifade edilebilen eşitsizliklere bir bilinmeyenli ikinci dereceden eşitsizlikler deniyordur. Bu tür denklemlerin çözümünde ax 2 +bx+c ifadesinin işaretinin incelenmesi,x in hangi değerler için negatif hangi değerleri için pozitif olduğunu belirlemek gerekiyordur. Bu çözümleme a nın işareti ile ax 2 +bx+c=0 denkleminin köklerine bağlıdır. ax 2 +bx+c üç terimlisinin işaret incelemesi:ax 2 +bx+c ifadesinin işaret tablosu Δ=b 2 -4ac nın durumuna göre incelenir. Var olan kökler tabloda küçükten büyüğe sıralanarak yazılır. Oluşturulan aralıkların işaretleri belirlendikten sonra eşitsizliğin yönüne göre istenilen aralık taranarak çözüm kümesi belirlenir.

Δ>0 ise; ax 2 +bx+c denkleminin x 1 ve x 2 gibi iki farklı gerçel kökü olsun. Δ=0 ise; ax 2 +bx+c denkleminin x 1 =x 2 çakışık iki kökü vardır.

Δ<0 ISE; AX 2 +BX+C DENKLEMININ REEL KÖKÜ YOKTUR.

ÇARPıM VE BÖLÜM DURUMUNDAKI EŞITSIZLIKLER f(x)= P(x).Q(x) / H(x) biçimindeki bir eşitsizliğin işareti incelenirken H(x)≠0 olmak üzere P(x), Q(x) ve H(x) polinomlarının kökleri ayrı ayrı bulunup tek bir tabloya yerleştirilir. Tabloda işareti belirlemek için yapılması gereken şöyledir: Önce bütün polinomların baş katsayılarının işaretine göre genel işaret belirlenir. Tablo oluşturulup daha önceden bulduğumuz bütün kökler küçükten büyüğe tabloya yerleştirilir. En son olarak tablonun sağından genel işaret ile işaretlemeye başlanır. Her kökte işaret değiştirilip sola doğru ilerlenir. * Çift katlı köklerde ve mutlak değerin kökünde işaret değiştirmeden devam edilir

2. DERECEDEN DENKLEMLERLE ILGILI KARıŞıK SORULAR