Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

SİMPLEKS METOT Müh. Ekonomisi. Çözüm için aşağıdaki doğrusal programlama tablosu oluşturulur. Temel Değişkenler Sütunu Temel Olmayan (Karar) Değişkenleri.

Benzer bir sunumlar


... konulu sunumlar: "SİMPLEKS METOT Müh. Ekonomisi. Çözüm için aşağıdaki doğrusal programlama tablosu oluşturulur. Temel Değişkenler Sütunu Temel Olmayan (Karar) Değişkenleri."— Sunum transkripti:

1 SİMPLEKS METOT Müh. Ekonomisi

2 Çözüm için aşağıdaki doğrusal programlama tablosu oluşturulur. Temel Değişkenler Sütunu Temel Olmayan (Karar) Değişkenleri Fiktif DeğişkenlerSabit Sütunu X 1 X 2 …………………… X n S 1 S 2 …………… S m Gaye Satırı CjCj C 1 C 2 …………………… C n S1S2...SmS1S2...Sm Temel Değişke nlerin katsayıl arı a 11 a 12 ……………………a 1n a 21 a 22 ……………………a 2n... a m1 a m2 …………………a mn 10 …………..…… ……….……… ……….……….. 1 b1b2...bmb1b2...bm ZjZj C j -Z j Gövde MatrisiBirim Matris

3 Bir önceki örneği simpleks metot ile çözelim. Örneğin amaç fonksiyonu ve kısıtlayıcı şartları aşağıdaki şekilde bulmuştuk. Zmax=8X1+9X2 20X1+25X2≤100 10X1+ 8X2 ≤41 15X1+18X2≤90 X1, X2 > 0

4 Şimdi fiktif değişkenleri ekleyerek verilerimizi tekrar düzenleyelim. Zmax=8X1+9X2 + 0S1 +0S2 +0S3 20X1+25X2 + S1 =100 10X1+ 8X2 + S2 =41 15X1+18X2+ S3 =90 X1, X2 > 0 Yukarıdaki verileri başlangıç tablomuza yerleştirelim.

5 Başlangıç Tablosu T. Değişkenler X1X2S1S2S3 ÇÖZÜM CjCj S S S Zj Cj-Zj89000 Çözümün araştırılması X1=0 ve X2=0 için çözüm mümkün olduğundan başlangıç olarak alınır. Bu durumda boş kapasite S1=100 S2=41 ve S3=90 olur. NBD ise Zmax= =0 olur. Şimdi daha fazla NBD i sağlayacak karar değişkeni bulmalıyız ve kendisiyle ilgili temel değişkenin yerine koymalıyız.

6 T. Değişkenler X1X2S1S2S3 ÇÖZÜM CjCj S S S Zj Cj-Zj89000 Çözümün araştırılması Cj-Zj satırına bakıldığında X1 in 8000 TL X2 nin 9000TL getirisi olduğu görülür. Maksimizasyon problemiyle ilgilendiğimizden X2 anahtar sütün olarak seçilir ve X2 temel değişken haline dönüşür. Şimdi X2 nin hangi S1, S2, S3 ün yerini alacağını bulmaya geldi. Bunun için sabitler sütunundaki değerler kendi satırlarında bulunan anahtar sütundaki değerlere bölünür. Negatif ve sıfır çıkanlar dikkate alınmayarak en küçük değere sahip olan satır anahtar satır (S1) olarak alınır. S1 tablodan ayrılır yerine X2 geçer. X2 9 S125100=100/25=4 S2841=41/8=5,125 S31890=90/18=5

7 T. Değişkenler X1X2S1S2S3 ÇÖZÜM CjCj X2020/2525/251/25004 S S Zj Cj-Zj89000 Çözümün araştırılması Anahtar sütun ile satırın kesiştiği hücredeki sayıya anahtar sayı denir. Şimdi X2 satırındaki tüm değeri anahtar sayıya bölelim. Burada X2 makinesinden 4 tane almamız gerektiğini görüyoruz. Bu durumda Zmax= =36000 TL olur. Problemin Çözümü için S2 ve S3 satırlarını da çözüme katmalıyız. Gauss eliminasyon metoduna benzer şekilde yani satırlar oluşturulur. Yeni Satır= Eski Satır- (Anahtar sütün katsayısı)x(yeni anahtar satır)

8 T. Değişkenler X1X2S1S2S3 ÇÖZÜM CjCj X2920/2525/251/25004 S2018/50-8/25109 S303/50-18/ Zj36/599/ Cj-Zj4/50-9/2500 S2 Yeni Satır (8)4/511/25004T T T 18/50-8/25109 S3 Yeni Satır (18)4/511/25004T T T 3/50-18/250118

9 T. Değişkenler X1X2S1S2S3 ÇÖZÜM CjCj X294/511/25004 S2018/50-8/25109 S303/50-18/ Zj36/599/ Cj-Zj4/50-9/2500 Cj-Zj satırına bakıldığında X2 nin 1 birim artışından getiri 0 iken X1 in 1 birim artışından getiri 4/5 dir. Gerçektende X2 makinesinden 4/5 vazgeçersek toplam getiri 8-(4/5)x9=4/5 olur. Optimal çözüm olması için Cj-Zj satırında pozitif sayı olmamalıdır. X1 sütununda 4/5 olduğundan yeni işlemlere ihtiyaç vardır. Daha önceki işlemleri tekrar edersek X1 sütunu anahtar sütun ve S2 satırı da ( 4:4/5=5, 9:18/5=5/2 ve 18:3/5=30)anahtar satır olur.

10 T. Değişkenler X1X2S1S2S3 ÇÖZÜM CjCj X294/511/25004 X1810-4/455/1805/2 S303/50-18/ Zj36/599/ Cj-Zj4/50-9/2500 Eliminasyon işlemleri yapılırsa, X2 Yeni Satır 4/511/ (4/5)10-4/455/1805/2T T T 0113/45-9/202 S3 Yeni Satır 3/50-18/ (3/5)10-4/455/1805/2T T T 00-2/3-1/6133/2

11 T. Değişkenler X1X2S1S2S3 ÇÖZÜM CjCj X29011/9-2/902 X1810-4/455/1805/2 S3000-2/3-1/6133/2 Zj8913/452/9038 Cj-Zj00-13/45-2/90

12 ≥, = Kısıtlılık Durumlarını İhtiva Eden Doğrusal Programlama Problemlerinin Çözümü Eğer kısıtlayıcı denklemlerde ≥, = varsa bu takdirde devreye V i (artık değişken) ve R i (yapay değişken) de devreye girer. S i (uydurma, aylak değişken) = Problemde kullanılmayan (boşa harcanan veya yitirilen) kaynakları gösterir. V i (artık değişken) = Problemde fazla kapasiteyi, fazla üretim faktörlerini, fazla üretim arzını veya fazla üretim talebini gösterir. R i (yapay değişken) = Ekonomik bir anlamı yoktur. Çözüm için gerekli birim matrisin oluşumunu sağlar.

13 S i (uydurma, aylak değişken) ve V i (artık değişken) amaç (gaye) fonksiyonunda 0 (sıfır) katsayısını alarak yerini alırken R i ‘nin katsayısı maksimizasyon problemlerinde (-M) minimizasyon problemlerinde (+M) olur. M çözümde değeri yüksek bir ceza değerini ifade eder ve gayesi çözümü sağlamaktır. Eğer M yerine bir sayı konulmak isteniyorsa bu sayı problemdeki bütün sayılardan büyük olmalıdır. Problemde kısıtlılık (=)ise çözümün sağlana bilmesi için eşitliğe +R i ilave edilir. Problemde kısıtlılık (≥) ise eşitlik haline getirebilmek için – V i ve +R i ilave edilir.

14 Örnek: BTARGE A.Ş. X1 ve X2 makinelerinden oluşan bir portföy oluşturmak istemektedir. X1 makinesinin NBD si 8000TL ve X2 makinesinin NBD si 9000TL dir. Bu makineler için kısıtlılıklar aşağıdaki şekildedir. Buna göre optimal çözümü simpleks metotla bulunuz X X2= (sermaye) 10000X1+8000X2≥ (enerji) 15X1+18X2 ≤90 (yer) X1,X2≥ 0 (pozitiflik) ÇÖZÜM: Problemi çözmek için uydurma(aylak), artık ve yapay değişkenleri ilave edelim. Sadeleştirmeleri yapalım…

15 Z max =8X1+9X2+0S3+0V2-MR1-MR2 20X1+25X2+R1=100 (sermaye) 10X1+8X2-V2+R2= 41 (enerji) 15X1+18X2+S3=90 (yer) X1,X2,R1,R2,V2,S3≥ 0 (pozitiflik) Yukarıdaki verileri tablomuza yerleştirerek başlangıç tablosunu oluşturalım. Başlangıç Tablosu X1X2V2R1R2S3ÇÖZÜM T.D.Cj890-M 0 R1-M R2-M S Zj-30M-33MM-M 0-141M Cj-Zj8+30M9+33M-M000

16 Tabloda Cj-Zj satırında en büyük değere sahip hücrenin bulunduğu sütun anahtar sütun anahtar sütun seçilir. Anahtar satır bulunmak için bi/aij formülü uygulanır (100/25=4, 41/8=5,125, 90/18=5 ) ve en küçük değere sahip oranın satırı (R1 satırı) anahtar satır olarak seçilir. Böylece anahtar sayı da 25 olur. Başlangıç Tablosu X1X2V2R1R2S3ÇÖZÜM T.D.Cj890-M 0 R1-M R2-M S Zj-30M-33MM-M 0-141M Cj-Zj8+30M9+33M-M000

17 X1X2V2R1R2S3ÇÖZÜM T.D.Cj890-M 0 X294/5101/25004 R2-M18/50-8/25109 S303/500-18/ Zj(36-18M)/59M(9+8M)/25-M036-9M Cj-Zj(4+18M)/50-M-(9+33M)/2500 Şimdi Cj-Zj satırında en büyük değer (4+18M)/5 olduğundan anahtar sütun X1 dir. Anahtar sattır ise R2 (4/(4/5)=5, 9/(18/5)=5/2 ve 18/(3/5)=30) olur. Tablo üzerinde gerekli işlemleri (gauss eliminasyonu) yaparsak yeni tablo aşağıdaki şekilde oluşur. X1X2V2R1R2S3ÇÖZÜM T.D.Cj890-M 0 X29012/91/9-2/902 X1810-5/18-4/455/1805/2 S30001/6-2/3-1/6133/2 Zj89-2/913/452/9038 Cj-Zj002/9-(M+13/45)-(M+2/9)0

18 Şimdi Cj-Zj satırında en büyük değer 2/9 olduğundan anahtar sütun V2 dir. Anahtar sattır ise X2 (2/(2/9)=9, (5/2/(-5/18)=-9 ve (33/2)/(1/6)=99/2) ve anahtar sayı ise 2/9 olur. Tablo üzerinde gerekli işlemleri (gauss eliminasyonu) yaparsak yeni tablo aşağıdaki şekilde oluşur. X1X2V2R1R2S3ÇÖZÜM T.D.Cj890-M 0 V2009/211/209 X1815/401/20005 S300-3/ Zj81002/50040 Cj-Zj00-(M+2/5)-M0 X1 den 5 tane alınırsa 9000 kWh fazla enerji kullanılır, 15 m2 boş alan kalır ve getiri TL olur.

19

20 MİNİMİZASYON PROBLEMİ Bazen problemlerde Yıllık Eşdeğer Masraf (YEM) ve Geri Ödeme Süresi (GÖS) ile karşılaşırız. Bura amaç minimumu bulmaktır. Bir önceki örnekte X1 in GÖS ü 1,63 yıl ve X2 nin GÖS ü 1,68 yıl olsun. Diğer kısıtlılık halleri değişmesin. Zmin=1,63X1+1,68X2 olur. İki yöntemle çözülebilir. Birincisi başlangıç tablosu maksimizasyondaki gibi kurulur. Cj-Zj satırında negatif eleman kalmayıncaya kadar işleme devam edilir. Çözüme Cj-Zj satırındaki en küçük elemanın sütünü seçilerek işleme başlanır ve maksimizasyondaki gibi devam edilir.. Diğer bir yöntem ise amaç fonksiyonunu -1 ile çarparak minimizasyon problemini maksimizasyon problemine çevirmektir.

21 Z min =1,63X1+1,68X2+0V2+MR1+MR2+0S3 20X1+25X2+R1=100 (sermaye) 10X1+8X2-V2+R2= 41 (enerji) 15X1+18X2+S3=90 (yer) X1,X2,R1,R2,V2,S3≥ 0 (pozitiflik) Yukarıdaki verileri tablomuza yerleştirerek başlangıç tablosunu oluşturalım. Başlangıç Tablosu X1X2V2R1R2S3ÇÖZÜM T.D.Cj1,631,680MM0 R1M R2M S Zj30M33M-MMM0141M Cj-Zj1,63-30M1,68-33MM000

22 2.aşama X1X2V2R1R2S3ÇÖZÜM T.D.Cj1,631,680MM0 X21,684/5101/25004 R2M18/50-8/25109 S303/500-18/ Zj 3,6M+1,44 1,68M-M 0,0762-0,32M M09M+6,72 Cj-Zj 0,19-3,6M1,68-1,68M M 1,32M Aşama (optimal) X1X2V2R1R2S3ÇÖZÜM T.D.Cj1,631,680MM0 X21,68012/91/9-2/902 X11,6310-5/18-4/455/1805/2 S30001/6-2/3-1/6133/2 Zj 1,63 1,68-1,43/181,88/451,43/1807,435 Cj-Zj 00 1,43/18 M-(1,88/45)M-(1,43/18) 0

23 Tabloya göre X1=2,5 ve X2=2 alınırsa minimal Z ye ulaşılır. Gerçektende Zmin= 2,5x 1,63+2x1,68=7,435 yıldır. Çözüm doğru parçasının diğer ucunda ise Z=5x1,63+0x1,68=8,15 yıl dır.


"SİMPLEKS METOT Müh. Ekonomisi. Çözüm için aşağıdaki doğrusal programlama tablosu oluşturulur. Temel Değişkenler Sütunu Temel Olmayan (Karar) Değişkenleri." indir ppt

Benzer bir sunumlar


Google Reklamları