Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

 ÜS KAVRAMI ÜS KAVRAMI  ÜSLÜ SAYILARDA TOPLAMA ÇIKARMA ÜSLÜ SAYILARDA TOPLAMA ÇIKARMA  ÜSLÜ SAYILARDA ÇARPMA ÜSLÜ SAYILARDA ÇARPMA  ÜSLÜ SAYILARDA.

Benzer bir sunumlar


... konulu sunumlar: " ÜS KAVRAMI ÜS KAVRAMI  ÜSLÜ SAYILARDA TOPLAMA ÇIKARMA ÜSLÜ SAYILARDA TOPLAMA ÇIKARMA  ÜSLÜ SAYILARDA ÇARPMA ÜSLÜ SAYILARDA ÇARPMA  ÜSLÜ SAYILARDA."— Sunum transkripti:

1

2

3  ÜS KAVRAMI ÜS KAVRAMI  ÜSLÜ SAYILARDA TOPLAMA ÇIKARMA ÜSLÜ SAYILARDA TOPLAMA ÇIKARMA  ÜSLÜ SAYILARDA ÇARPMA ÜSLÜ SAYILARDA ÇARPMA  ÜSLÜ SAYILARDA BÖLME ÜSLÜ SAYILARDA BÖLME  ÜSLÜ DENKLERMLER ÜSLÜ DENKLERMLER  ÜSLÜ SAYILARDA SIRALAMA ÜSLÜ SAYILARDA SIRALAMA  KAYNAKÇA KAYNAKÇA  KAZANIMLAR KAZANIMLAR İÇİNDEKİLER

4 ÜS KAVRAMI X bir gerçel sayı ve a bir pozitif tam sayı olsun a tane x in çarpımıolan x a sayısına bir üslü sayı denir. x. x. x. x … x = x a NOT: a tane x in toplamı a. x tir. Örneğin; = 2 5 =32 iken = 2.5 = 10 dur.

5 NOT: a bir gerçel sayı, n ise pozitif tam sayı olsun. a > 0 ise a n > 0 dır. “Pozitif sayıların kuvvetleri de pozitiftir.” a < 0 ise n tek iken a n < 0dır. n çift iken a n > 0 dır. “ Negatif sayıların tek kuvvetleri negatif, çift kuvvetleri pozitiftir.” Örneğin; a > 0 ise a 2 > 0, a 3 > 0 dır. a 0, a 3 < 0 dır.

6 ÖRNEK SORU 1: (-2) 3 +(-2) 4 +(-2) 5 işleminin sonucu kaçtır? Not: 1 in her kuvveti yine 1 dir. (-1) in tek kuvvetleri -1, çift kuvvetleri 1 dir. KURALLAR:  x sıfırdan farklı bir gerçel sayı olmak üzere, x 0 =1 dir. Örneğin; 2 0 = 1, 3 0 = 1 gibi.  Bir sayının birden fazla üssü varsa üsler çarpılır. (x a ) b = x a.b Örneğin; ( 2 3 ) 4 = 2 12 gibi.  x bir gerçel sayı olmak üzere, x -n = 1/ x n dir. Örneğin; 3 -2 = 1/3 2 ÇÖZÜM

7 UYARI: a ve b birer gerçel sayı olmak üzere, (a/b) n = 1/(b/a) n şeklinde yazılabilir. ÖRNEK SORU 2: (3/2) -2 + (6/5) -1 = ? ÇÖZÜM

8 ÜSLÜ SAYILARDA TOPLAMA- ÇIKARMA Tabanları aynı, üsleri eşit olan üslü sayılarda toplama ya da çıkarma işlemi yapılırken katsayılar toplamı ya da farkı alınır. Sonuç üslü sayı ile çarpılır. a.x n + b.x n = (a+b).x n dir. a.x n - b.x n = (a-b).x n dir.

9 ÜSLÜ SAYILARDA ÇARPMA Tabanları aynı olan üslü sayılarda çarpma işlemi yapılırken üsler toplanır ve ortak tabanın üssüne yazılır. x m. x n = x (m+n) dir. Üsleri eşit olan üslü sayılar çarpılırken önce tabanlar çarpılır, sonra ortak üs yazılır. x n.y n = (x.y) n dir

10 ÜSLÜ SAYILARDA BÖLME Tabanları aynı olan üslü sayılarda bölme işlemi yapılırken bölünen sayının üssünden bölen sayının üssü çıkarılır ve ortak tabanın üssü olarak yazılır. x m /x n = x (m-n) dir. Üsleri eşit olan üslü sayılar bölünürken önce tabanlar bölünür, sonra ortak üs yazılır. x n /y n = (x/y) n dir.

11 ÜSLÜ DENKLEMLER x≠-1, x≠0, x≠1 olmak üzere; x a = x b → a = b dir. a n = b n ise n tek iken a = b, n çift iken a = b veya a = -b dir. a x =b y ifadesinde a ve b aralarında asal sayılar ise x = y = 0 dır. x n = 1 ise n = 1 olabilir n = 0 olabilir.(x≠0 iken) n çift iken x = -1 olabilir.

12 ÜSLÜ SAYILARDA SIRALAMA a bir pozitif basit kesir olsun. (0 a y ise x < y dir. a sayısı 1 den büyük bir gerçel sayı olsun. a x > a y ise x > y dir. Tabanları eşit olan üslü sayılarda üssü küçük olan daha küçüktür. Üsleri eşit olan üslü sayılarda tabanı küçük olan daha küçüktür.

13 2 a = 27 eşitliğinde verilen 27 sayısı 2 nin tam bir kuvveti olmadığına göre, a sayısı bir tam sayı değildir. a nın hangi aralıkta değer aldığını bulmak için 2 nin 27 den küçük olan en büyük üssü ile 27 den büyük en küçük üssü bulunur. 2 4 =16 ve 2 5 =32 ise 2 4 < 27 < 2 5 → 2 4 < 2 a < 2 5 → 4 < a < 5 olur.

14 ÖRNEK SORULAR : 1.5 4x-2 = 25 x+2 olduğuna göre, x kaçtır? 2.12 x-2 = 4 x olduğuna göre, 3 x-2 kaçtır? ) -2. (1/5) 3.(5/3) -2. (1/5) -3 işleminin sonucu kaçtır? ÇÖZÜM

15 KAYNAKÇALAR 1.İlköğretim Matemetik Ders Kitabı 2.Komisyon, İhtiyaç Yayınları, Güven GÖLLÜOĞLU, Yargı Yayınevi, Fem Yayınlar, MEB Talim ve Terbiye Kurulu sitesi

16  Tam sayıların, tam sayı kuvvetlerini hesaplar, üslü ifade şeklinde yazar.  Sayıların ondalık gösterimlerini 10’un tam sayı kuvvetlerini kullanarak çözümler.  Üslü ifadelerle ilgili temel kuralları anlar, birbirine denk ifadeler oluşturur.  Çok büyük ve çok küçük sayıları bilimsel gösterimle ifade eder ve karşılaştırır KAZANIMLAR

17 Sunumun hazırlanmasında bana kaynakça olan İhtiyaç yayınları, fem yayınları, yargı yayınevine ve ilköğretim matematik ders kitabını oluşturan değerli öğretmen kadrosuna teşekkür ederim TEŞEKKÜRLER

18 İlk öğretim matematik 2/A Ahmet YER

19 ÇÖZÜM: (-2) 3 +(-2) 4 +(-2) 5 = (-32) = = -24 tür. GERİ

20 ÇÖZÜM: (3/2) -2 + (6/5) -1 = (2/3) 2 + (5/6) 1 = 4/9 + 5/6 = (8+15)/18 =23/18 GERİ

21 ÇÖZÜM: 5 4x-2 = 25 x+2 → 5 4x-2 = 5 2(x+2) → 4x-2 =2(x+2) → 4x-2 = 2x+4 → 4x-2x = 4+2 → 2x = 6 → x = 3 GERİ

22 ÇÖZÜM: 12 x-2 = 4 x → 4 3x x-2 = 4 x → 3 3x-2 = 4 x / 4 3x-2 → 3 3x-2 = 4 x-3x+2 → 3 3x-2 =4 -2x+2 GERİ

23 ÇÖZÜM: (5/3) -2. (1/5) -3 = (3/5) 2. (5/1) 3 = (9/25). (125/1) =9.5 = 45 GERİ


" ÜS KAVRAMI ÜS KAVRAMI  ÜSLÜ SAYILARDA TOPLAMA ÇIKARMA ÜSLÜ SAYILARDA TOPLAMA ÇIKARMA  ÜSLÜ SAYILARDA ÇARPMA ÜSLÜ SAYILARDA ÇARPMA  ÜSLÜ SAYILARDA." indir ppt

Benzer bir sunumlar


Google Reklamları