Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

Bölüm 7 BOYUT ANALİZİ VE MODELLEME. Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 2 Amaçlar 1.Boyut, Birim ve Boyutsal Homojenliği anlamak.

Benzer bir sunumlar


... konulu sunumlar: "Bölüm 7 BOYUT ANALİZİ VE MODELLEME. Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 2 Amaçlar 1.Boyut, Birim ve Boyutsal Homojenliği anlamak."— Sunum transkripti:

1 Bölüm 7 BOYUT ANALİZİ VE MODELLEME

2 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 2 Amaçlar 1.Boyut, Birim ve Boyutsal Homojenliği anlamak 2.Boyut analizinin yararlarını kavramak 3.Tekrarlayan değişkenler yöntemini öğrenmek 4.Benzerlik kavramını öğrenmek ve deneysel modellemede kullanmak

3 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 3 Boyutlar ve Birimler Genel Hatırlatmalar Boyut: Bir fiziksel büyüklüğün ölçüsünü verir, örneğin uzunluk, kütle, zaman vb. Birim: Sayının bilinen bir ölçeğe göre niteliğini temsil eder, örneğin (m), (s), (kg) 7 Ana Boyut Vardır: 1.Kütlem (kg) 2.UzunlukL (m) 3.Zamant (sec) 4.SıcaklıkT (K) 5.Elektrik akımıI (A) 6.Işık miktarıC (cd) 7.Madde miktarıN (mol)

4 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 4 Boyutlar ve Birimler Ana ya da birincil boyutların dışında kalan tüm boyutlar bu 7 ana boyuttan türetilebilir Örnekler: {Hız} = {Uzunluk/Zaman} = {L/t} {Force} = {Kütle*Uzunluk/Zaman} = {mL/t 2 }

5 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 5 Boyutsal Homojenlik BH yasası, toplanan tüm terimlerin aynı boyuta sahip olması gerektiğini ifade eder (Elma+Armut ?) Örnek: Bernoulli denklemi {p} = {kuvvet/alan}={kütle x uzunluk/zaman x 1/uznlk 2 } = {m/(t 2 L)} {1/2  V 2 } = {kütle/uznlk 3 x (uznlk/zaman) 2 } = {m/(t 2 L)} {  gz} = {kütle/uzunlk 3 x uzunlk/zaman 2 x uzunlk} ={m/(t 2 L)}

6 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 6 Denklemlerin Boyutsuzlaştırılması Boyutsal olarak homojen bir denklemin her bir terimini değişken ve sabitlerden olşan bir gruba böldüğümüzde, denklemi boyutsuzlaştırmış oluruz. Böyle denklemlere “boyutsuz” denir. Boyutsuzlaştırma sonucu genellikle Re, Pr, Fr gibi boyutsuz sayılar elde edilir.

7 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 7 Denklemlerin Boyutsuzlaştırılması Bernoulli denklemini boyutsuzlaştıralım. Bir denklemi boyutsuzlaştırmak için önce tüm parametrelerin boyutları yazılır: {p} = {m/(t 2 L)}{  } = {m/L 3 }{V} = {L/t} {g} = {L/t 2 }{z} = {L} Şimdi de Ölçeklendirme (Referans) Parametrelerini seçelim: L, U 0,  0

8 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 8 Denklemlerin Boyutsuzlaştırılması Tüm değişkenler boyutsuz olarak ifade edilir: Bu ifadelerdeki p, , V, g, z değişkenleri denklemler yerine konur:

9 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 9 Denklemlerin Boyutsuzlaştırılması Tüm terimler  0 U 0 2 e bölünür ve sıkıştırılamaz akış için  * = 1 alınır Ancak g* = 1/Fr 2 olduğundan

10 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 10 Denklemlerin Boyutsuzlaştırılması Basınç veya basınç farkını boyutsuzlaştırmada genellikle 1/2  0 U 0 2 (dinamik basınç) terimi kullanılır. Bu durumda çok az farklı bir Bernoulli denklemi elde edilir

11 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 11 Denklemlerin Boyutsuzlaştırılması Boyutsuzlaştırmanın önemi Önemli parametreler hakkında görüş kazandırır Problemdeki parametre sayısını azaltır Daha kolay iletişim (birimlerden bağımsız) Daha az deney gereksinimi Daha az simülasyon ihtiyacı Elde edilen sonuçlar denenmemiş durumların kestiriminde kullanılabilir.

12 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 12 Boyut Analizi ve Benzerlik Bir denklemin var olması halinde boyutsuzlaştırma çok faydalıdır Ancak uygulamada denklem genellikle ya bilinmez ya da çözüm çok güçtür. Bu tür hallerde deney yapmak, güvenilir bilgi edinmenin tek yoludur. Zaman ve paradan tasarruf sağlamak için deneylerde çoğu zaman geometrik olarak ölçeklendirilmiş modeller kullanılır. Tam ölçekli prototip için elde edilen sonuçların anlamlı olabilmesi için deney koşulları ve sonuçlar uygun biçimde ölçeklendirilmelidir Boyut analizi bu hallerde çok faydalıdır

13 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 13 Boyut Analizi ve Benzerlik Boyut Analizinin Amaçları Deney tasarlama ve sonuçların raporlanmasında yardımcı olacak boyutsuz parametreler oluşturma Model üzerinden prototipin performansını kestirmek için ölçeklendirme yasaları elde etmek. Parametrelere arasındaki ilişkilerin trendini kestirmek.

14 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 14 Boyut Analizi ve Benzerlik Geometrik Benzerlik – Model ve prototip aynı geometrik şekle sahip olmalıdır. Karşılıklı boyutların oranı sabit olmalıdır. Kinematik Benzerlik – Model ve prototipte karşılıklı hızlar orantılı olmalıdır. Dinamik Benzerlik – model akışındaki tüm kuvvetler prototip akışta bunlara karşılık gelen kuvvetlerle orantılı olmalıdır. Tam Benzerlik- Yukarıdaki 3 benzerlik koşulu sağlanmışsa, tam benzerlik elde edilmiştir. Ancak bu her zaman mümkün olmayabilir (akarsu ve ırmak akışları)

15 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 15 Boyut Analizi ve Benzerlik Tam benzerliğin sağlanabilmesi için model ve prototip arasındaki tüm  gruplarının aynı olması gerekir. Peki  nedir? Şu bizim 3.14 olan garip sayı mı? Re, Fr, C D, gibi boyutsuz parametreleri büyük  harfi ile göstereceğiz. Bunun 3.14 ile bir ilgisi yoktur!!! Bir otomobil deneyi ele alalım Direnç kuvveti F = f(V, , L) Boyut analizi yardımıyla bu 5 parametreli problemi 2 parametreye indirgemek mümkündür:

16 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 16 Tekrarlayan Değişkenler Yöntemi Boyutsuz  terimleri birkaç yolla elde edilebilir. Biz burada 6 adımdan oluşan Tekrarlayan Değişkenler Yöntemini vereceğiz. Neymiş bu 6 adım bakalım: 1.Probleme dahil olabilecek parametrelerin listesini çıkarın ve bunları sayın (n=?). 2.Bu n tane parametrenin her birinin ana boyutlarını yazın 3.Toplam kaç ana boyut varsa bunların sayısı j olsun. Bu durumda problemde beklenen  terimlerinin sayısı k = n – j olur. 4.Problemdeki değişkenlerden j tanesini tekrarlayan değişken olarak alın. Çoğu problemde bunlar uzunluk, hız ve kütle (veya yoğunluktur.

17 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 17 Tekrarlayan Değişkenler Yöntemi 5. K tane  ‘ terimini oluşturun, gerekli gördüğünüz değişiklikleri bu aşamada yapın 6.Fonksiyonel ilişkinin son halini yazın ve yaptığınız cebirsel işlemleri kontrol edin. 7.Tekrarlayan değişkenleri seçimi son derece önemlidir. Bu konuda dikkat edilmesi gereken önemli noktalar Tablo 7-3 te özetlenmiştir.

18 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 18 ÖRNEK Adım 1: İlgili parametreler: z=f(t,w 0,z 0,g)  n=5 Adım 2: Ana boyutlar Adım 3: İlk tahmin olarak, iki ana boyut olduğundan(L ve t) j =2 alalım. Buna göre beklenen  sayısı k=n-j=5-2=3 Adım 4: Tekrarlayan değişkenler: w 0 ve z 0 Vakum ortamda düşen top

19 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 19 Tekrarlayan Değişkenlerin Seçimi 1.Asla bağımlı değişkeni alma, aksi halde tüm  terimlerinde görünür. 2.Seçilen parametreler kendi aralarında boyutsuz bir grup oluşturmamalı, aksi halde diğer  terimlerini elde etme imkanı kalkar. 3.Seçilen parametreler tüm ana boyutları temsil edebilmeli. 4.Kendileri zaten boyutsuz olan parametreleri seçme. 5.Aynı boyutta ya da sadece üsleri farklı iki parametre seçme. 6.Boyutlu sabitleri boyutlu değişkenlere tercih edin, böylece boyutlu değişken tek bir  teriminde oluşur. 7.Her  teriminde görülebileceği için ortak parametreleri seçin. 8.Basit değişkenleri tercih edin.

20 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 20 Örnek (devam) Adım 5: Her seferinde tekrarlayanların dışında kalan parametrelerden birini tekrarlayanlarla çarpım halinde ifade edin. Böylece her seferinde bir  oluşturmuş olursunuz.  1 = zw 0 a1 z 0 b1 a1 ve b1 tespiti yapılacak sabitlerdir. Adım 2 deki ana boyutları kullanarak bu sabitleri bulun Zaman: Uzunluk: Sonuç:

21 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 21 Örnek (devam) Step 5 (devam) Aynı işlemi, bu sefer t yi kullanarak  2 için yapalım  2 = tw 0 a2 z 0 b2 Zaman: Uzunluk: Sonuç:

22 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 22 Örnek (devam) Step 5 (devam) Son olarak g yi alarak  3 ü oluşturalım  3 = gw 0 a3 z 0 b3 Zaman: Uzunluk: Sonuç

23 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 23 Örnek (devam) Step 6: Elde ettiğin  ‘ler gerçekten boyutsuz mu? Kontrol et!! Sonuç ifadeyi yaz: Veya boyutsuz değişkenler cinsinden; DİKKAT: Bu yöntem boyutsuz  ‘ grupları arasındaki fonksiyonel ilişkiyi doğru biçimde ortaya koymaktadır, ancak denklemin tam matematiksel biçimi konusunda fikir vermez.

24 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 24 Deneysel Test Etme ve Tam Olmayan Benzerlik Boyutsuz analizin en yararlı uygulamalarından biri de fiziksel/sayısal deney tasarlama ve sonuçları raporlama. Deney kurma ve veriler arasındaki ilişkiyi ortaya koymadır 5 parametreli bir problem bulunsun. Bunlardan 1 tanesi bağımlı değişken olsun Her bir parametreyi 5 farklı ölçümle deneyecek olsak. Bu durumda 4 tane bağımsız parametre için 5 4 =625 defa deney yapmamız gerekir!! Ancak problemi 2 tane  ’ye indirgersek,bağımsız değişken sayısı 4 ten 1 e iner ve toplamda sadece 5 1 =5 deney yeterli olur. 5 << 625

25 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 25 Deneysel Test Etme ve Tam Olmayan Benzerlik Serbest yüzeyli akışlar, tam dinamik benzerliğe ulaşmada bazı zorluklar çıkarır. Hidrolik uygulamalarında derinlik, yatay boyutların yanında çok küçük kalır. Eğer geometrik benzerlik kullanılıyorsa model derinliği çok sığ kalır ve bu da başka sorunlara yol açar: Yüzey gerilimi etkileri (Weber sayısı) önemli hale gelir. Veri alımı zorlaşır. Bu tür durumlarda, deneysel düzeltmelere ihtiyaç bırakan çarpık modeller kullanılır. Wanapum Dam on Columbia River Physical Model at Iowa Institute of Hydraulic Research

26 Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 26 Deneysel Test Etme ve Tam Olmayan Benzerlik Gemi hidrodinamiği içinFr sayısı benzerliği sağlanırken Re’ler farklı olabilir Neden acaba? Tam benzerlik şartına bakalım: Re ve Fr nin aynı olması için model testinde viskozitenin aşağıdaki eşitliği sağlaması gerekir ki fonksiyonu olması gerekir ki bu pek kolay değildir. Tam Ölçekli Destroyer 1/20 ölçekli model


"Bölüm 7 BOYUT ANALİZİ VE MODELLEME. Chapter 7: Dimensional Analysis and Modeling ME33 : Fluid Flow 2 Amaçlar 1.Boyut, Birim ve Boyutsal Homojenliği anlamak." indir ppt

Benzer bir sunumlar


Google Reklamları