Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz


Benzer bir sunumlar

... konulu sunumlar: "MADDE, ENERJİ, KANUN ve KAİNATA YENİ BİR BAKIŞ"— Sunum transkripti:

Prof. Dr. Yunus Çengel Department of Mechanical Engineering University of Nevada Reno, Nevada, USA Mayıs 2004 Source for photo: 15 Mart 2004 Hurriyet

2 NEVADA – “Gümüş” Eyalet İHTİMAL HESABI: Tesadüfteki Gizli Düzen
Endüstri: Kumar ve maden (altın, gümüş) İnsanlar kumar oynar, ama gazinolar kumar oynamaz. Gazinolarin Yıllık Kazancı: $15 milyar Para: Yazı-Tura gelme ihtimali. Kamuoyu Araştırmaları: 1000 kişi 100 milyonu temsil ediyor. “ŞANS DALGASI” kavramı.

3 Maddeye Eski Bakış: (Empedocles, M.Ö. 5. yüzyıl)
Hava Ateş Su Toprak Tüm maddeler 4 elementten oluşur: Hava, toprak, ateş, ve su. Bu teori 17nci yüzyıla kadar fizik ve kimya alanlarına hükmetti.

4 Şimdiki Bakış: Atom and Atomaltı Parçacıklar
107 değişik element. 1930’larda herşeyin elektron, proton, ve nötron’lardan oluştuğu zannedilirdi. Sonra 100’lerce değişik parçacıklar bulundu. 1897: Elektron keşfedildi. 1919: Proton keşfedildi. 1932: Nötron keşfedildi. Parçacıkların çoğu, quark denen daha elemental parçacıklardan olusur.

5 Dalga-Parçacık İkiliği (Çifteliği): ELEKTRONLARIN DALGA KAREKTERİ
1923 Elektronların dalga-parçacık ikiliği teklifi (Parçacıkların de Broglie dalgaları - Nobel prize to de Broglie of France in 1929 for his discovery of the wave nature of electrons) 1927 Elektronların kristaller tarafından difreksiyonunun keşfi. Elektronların dalga özelliklerinin teyidi. Heisenberg’in belirsizlik prensibinin keşfi. (Nobel Prize to C. J. Davisson (US) and G. P. Thomson (England) in 1937 "for the experimental discovery of the diffraction of electrons by crystals" 1928 Elektronların relativistik dalga denkleminin keşfi. (Nobel prize to P. A. Maurice Dirac (England) and E. Schrodinger (Austria) in 1933 "for the discovery of new productive forms of atomic theory". It has long been known that particles of matter behave, in some circumstances, akin to waves instead (the effect has been observed for electrons and many other familiar particles. When particles behave like waves, they exhibit a sort of frequency which is proportional to their energy. There are several different ways of approaching this question, but I won't beat around the bush. The simple answer is that wave/particle duality, as it is called, is present in the macroscopic world--but we can't see it. Scientists have developed a number of indirect methods for observing wave/particle duality. One of the earliest experiments showed that a regular array of atoms could diffract an electron beam. Because diffraction is a property of a wave, this test indicated that particles--electrons in this case--could also behave as waves. The physicist Louis deBroglie proved that any particle in motion has a wave-like nature. He developed the following relationship: the wavelength of a particle's wave aspect is equal to Planck's constant divided by the momentum of the particle. Now, most of the objects that we encounter have incredibly large masses compared with atomic and sub-atomic particles, which can give them a relatively huge momentum. For example, if you calculate the wavelength of a one-pound basketball traveling at one foot per second (I hope the purists will forgive my use of units, but they work out quite well in this case), you will find that it has a wavelength of around meters. This wavelength is incredibly small--too small, in fact, to measure using modern instrumentation. An electron, though, is less massive than our basketball by a factor of about So, an electron traveling at the same speed as our basketball has a wavelength of some 10-4 meters, which is quite measurable. Thus, we can determine the wavelength of very small particles, but not of large macroscopic items such as basketballs. Answer posted February 16, 1998 p. 149 Heisenberg’s principle of uncertainty: We cannot determine both the position and the velocity of a particle with exactitude, even in imagination. p. 151 Whatever a particle may be, it is no longer what we used to think it was. The old particle could have both position and velocity both. The new particle can have position, or it can have velocity, or it can have a rather fuzzy position together with rather fuzzy velocity, but it cannot have both together with precision. p. 170 We still shrink from visualizing an electron as something which having motion may have no position, and having position may have no such thing as motion or rest. p. 171 He it was who saw that the wave and particle were but two aspects of the same thing. p. 197 These electrons and the other fundamental particles, they do not exist in space and time. It is space and time that exist because of them.

“Parçacıkların pozisyon ve momentumları kesin olarak belirlenemez. Bunlardan biri ne kadar çok kesine yakın bilinirse diğeri o kadar az kesine yakın bilinebilir.” Bu, kuantum mekaniğinin temel bir özelliğidir, ve “sanal parçacıklar” fikrine yol açar. Zaman ve mekan parçacıklar yüzünden vardır; yoksa parçacılar zaman ve mekanda var olan şeyler değillerdir.

7 KARANLIK MADDE (Dark Matter) ve NÖTRİNO (Neutrino)
Galaksilerdeki yıldızları bir arada tutan çekim kuvvetinin görülen kütle ile sağlanması mümkün değildir. O halde göremediğimiz bir “karanlık madde” gerekli ilave çekim kuvvetini sağlamalıdır. “Karanlık madde” ışık vermez, ışığı almaz ve yansıtmaz. Karanlık madde electron, proton, ve nötrondan oluşmaz. Kainattaki tüm maddenin %80’i karanlık maddedir. Karanlık maddenin en muhtemel temel yapı taşı adayı “nötrino”dur. Nötrino: Kainatı dolduran gölgemsi madde. The most obvious example of the gravitational effects of dark matter can be observed when looking at the rotation of galaxies. Scientists figure dark matter must exist because of the way galaxies rotate. In simple Newton's-first-law terms, moving things will remain moving in a straight line unless some force causes a change in direction. For the stars in a galaxy to remain in orbit around the galaxy's center, some force must be acting on them, and the only possible candidate, at such distances, is gravity. But the gravity attributable to the stuff we can see is way too feeble to "glue" galaxies together. It's dark matter -- or more exactly, the gravity it exerts -- that must supply the force holding galaxies together, and lots of dark matter is needed to do the job. The numbers seem to change each month, but roughly 80 percent of all matter in the universe is that unseeable flavor. So it doesn't take an astrophysicist to realize that if we want to understand the universe, we've got to transcend today's bumper-sticker level of knowledge about dark matter.

8 Nötr Parçacık Nötrino’nun Tarihi
Nötrinoların varlığı hipotezi radiyoaktif bozunum sırasında enerji ve momentumun korunumunu sağlama ihtiyacından doğdu (W. Pauli). Radiyoaktif bozunum teorisinde bu “sanal” parçacıklara da yer verildi (Enrico Fermi), ve onlara İtalyanca’da “küçük nötr şey” anlamında “neutrino” adı verildi. 1955 – Varlıkları ilk kez deneysel olarak belirlendi (1995 Nobel ödülü). Supernova patlaması sırasında ilk kez nötrino fışkırmasının gözlendi. 1998 – Nötrino’nun kütlesi olduğunun gösterildi. Experiments at Brookhaven National Lab and CERN (the European Laboratory for Nuclear Physics) make a surprising discovery: neutrinos produced in association with muons do not behave the same as those produced in association with electrons. They have discovered a second type of neutrino (muon neutrino) The first experiment to detect (electron) neutrinos produced by the Sun's burning (using a liquid Chlorine target deep underground) The tau particle is discovered at the Stanford Linear Accelerator Center. It is soon recognized to be a heavier version of the electron and muon, and its decay exhibits the same apparent imbalance of energy and momentum that led Pauli to predict the existence of the neutrino in The existence of a third neutrino associated with the tau is hence inferred, although this neutrino has yet to be directly observed. A Russian team reports measurement, for the first time, of a non-zero neutrino mass. Kamiokande, another large water detector looking for proton decay, and IMB detect a simultaneous burst of neutrinos from Supernova 1987A. The Super-Kamiokande collaboration announces evidence of non-zero neutrino mass at the Neutrino '98 conference. Neutrino Oscillations-Mass In five distinct measurements, Super-Kamiokande finds neutrinos apparently "disappearing". Since it is unlikely that momentum and energy are actually vanishing from the universe, a more plausible explanation is that the types of neutrinos we can detect are changing into types we cannot detect. This phenomenon is known as neutrino oscillation. The term neutrino "oscillation" was coined because the transition between neutrino types is not one-way. In other words, a muon neutrino which (say) transforms into the tau type will actually transform back and forth as it sails along. Relevance to the question of neutrino mass: massless neutrinos cannot oscillate. If neutrinos have mass and therefore are able to change their stripes, both the atmospheric and solar neutrino anomalies could be solved. This is because muon neutrinos from the atmosphere which oscillate into tau neutrinos would be experimentally undetectable. Similarly, if electron neutrinos from the Sun change into muon or tau neutrinos, they too will interact at a significantly lower rate. The strange disappearance of both atmospheric muon neutrinos and solar electron neutrinos can be understood as a process of "neutrino oscillation". What that means is that, given the proper conditions, a neutrino of one type can change into one of a different type; if all three neutrinos have a mass of zero, or even the same mass of any value, this would not be allowed. As a general rule, neutrinos travelling greater distances will exhibit greater depletion from oscillation. Moreover, the oscillation probability varies smoothly over increasing distance. Hence, tests of the angular variation of the muon rate are the best to determine whether the overall deficit of muon neutrinos fits the hypothesis of oscillation as opposed to other some unaccounted-for systematic effect. Interference Interference has a very specific meaning in connection with wave behavior, namely it either means one wave's "peaks" add together with another wave's "peaks" to produce an even bigger peak ("constructive interference") or one wave's peaks add together with another wave's troughs to cancel out both waves ("destructive interference"). When two waves moving together add or subtract in this way, there is still no dramatic effect if the waves have the same wavelength (or equivalently, frequency), since in that case the resulting wave is simply a larger or smaller copy of the original ones. If, on the other hand, the interfering waves have different frequencies, the resulting wave is not simply an enlarged or reduced version of either of the original waves. In fact, the resulting wave has no definite wavelength; at some points the two waves interfere constructively, and at others they interfere destructively. At points where one wave is crossing zero (i.e. steeply rising or falling) and the other is at a minimum or maximum (i.e. is approximately flat), the combined wave appears to have the frequency of the first wave. At other points, the situation is reversed and the combined wave has a frequency close to that of the second wave. The frequency at which this phenomenon repeats is related to the arithmetic difference in the two original frequencies. In effect the combined wave changes its behavior from being like one wave to being like the other with a new frequency equal to the difference in the individual frequencies. In the case of a matter wave, where the particle has a mass much smaller than its energy, it can be shown that the frequency is proportional to the square of the mass, divided by the momentum. This is getting to sound pretty similar to neutrino oscillation (waves alternating back and forth between different characteristics). It sounds great, except if a given neutrino is one matter wave, where is the other matter wave which is interfering with it to produce this flip-flopping? The answer is that (in our simplified case of two neutrinos) the neutrino actually interferes with itself. Putting it another way, a neutrino can propagate not as a single wave, but as pre-packaged combination of two. The reason is that neutrinos are produced in weak interactions, as either an electron neutrino, a muon neutrino, or a tau neutrino. But what if the electron neutrino itself acts like one of our combined waves? That is, what if the electron neutrino does not have a definite mass, but instead acts like our schizophrenic wave? That is the unstated premise of neutrino oscillation; an electron neutrino, when produced must be in a quantum mechanical state which has, in effect two different masses. A muon neutrino is a similar, complementary mixture of the two masses. Conversely, a neutrino with exactly one, definite mass must be a mixture of electron and muon neutrinos. So when an electron neutrino (and its combined matter wave) is produced and starts to propagate, the two different mass values interfere with each other. Depending on the difference in frequency between the two waves, the initial electron neutrino combined wave will sometimes be dominated by one or the other waves subcomponents which has a specific mass and frequency. But if a neutrino with a definite mass is a mixture of both electron and muon neutrinos (this pre-condition for oscillation is termed "mixing"), what started as a pure electron neutrino with a mixture of masses has become a neutrino with a pure mass and a mixture of electron neutrino and muon neutrino properties. In fact the combined electron neutrino matter wave, as the two matter wave components with different masses irregularly add and cancel with each other, may even at times very closely resemble the combined muon neutrino matter wave. If the neutrino interacts a point where it is not in a definite state of being either an electron neutrino or a muon neutrino, which one it behaves like at that moment is anybody's guess. The above is an attempt to sketch out the plausibility of the idea of neutrino oscillations and the implication of unequal (and hence non-zero) neutrino mass if the phenomenon is observed. It may reassure the skeptical reader to know that an essentially identical interference/mixing/oscillation scenario has in fact been experimentally observed for 20 years between two other subatomic particles called kaons. There is no question that if neutrino have different (non-zero) masses, and if they mix so that each neutrino represents a mixture of two or more different masses, neutrino oscillations will occur. Similarly, there is no known or imagined mechanism by which massless neutrinos would oscillate.

9 Maddenin En Temel Yapı Taşı (Parçacığı)
NÖTRİNO: Maddenin En Temel Yapı Taşı (Parçacığı) “Kainat artık aynı olmayabilir” - New York Times, 5 Haz 1998. “Tabiatı derinden derine anladığımızı söyleyemeyiz.” Reno Gazette Journal, 8 Aralık 1998. “Umuyoruz ki neredeyse hiçbirşey olan bu parçacık bize kainat hakkında neredeyse herşeyi söyleyecek.” F. Halzen, University of Wisconsin-Madison

10 President CLINTON ve NÖTRİNO
“Daha dün Japonya’da fizikçiler minik nötrinoların kütlesi olduğunu açıkladı. Bu birçok Amerikalı için pek bir şey ifade etmeyebilir. Fakat bu bizim en temel teorilerimizi değiştirebilir – en küçük atomaltı parçacıklardan kainatın nasıl işlediğine ve hatta nasıl genişlediğine kadar.” “Burada daha büyük olan mesele bu tür buluşların laboratuvarları aşan etkilere sahip olması. Bunlar tüm toplumu etkilerler – sadece ekonomimizi değil, aynı zamanda hayata bakışımızı, başkalarıyla olan ilişkilerimizi irdeleyişimizi, ve hatta bizim zaman içindeki konumumuzu.” - MIT commencement, 6 Haziran 1998.

11 KARŞIMADDE (Antimatter)
Her parçacığın bir karşı-parçacığı (karşımadde) vardır. 1930, ’da Paul Dirac kuantum teorisi temelinde elektronların hareketini formüle ederken bir sürprizle karşılaştı: - Elektronların hareket denklemleri aynı zamanda elektronla kütlesi aynı fakat yükü zıt parçacıkların varlığını gerektiriyor ve onların da hareketini tanımlıyordu. Bir parçacık ile onun karşı-parçacığı karşılaştığı zaman, parçacıklar birbirini yok ederler ve enerjiye (foton ve gluon gibi bozonlar) dönüşürler. İlginçtir ki kainatta bu kadar çok maddeye karşi bu kadar az karşimadde var. R. Michael Barnett of the Lawrence Berkeley National Laboratory and Helen Quinn of the Stanford Linear Accelerator Center offer this answer, portions of which are paraphrased from their book The Charm of Strange Quarks: In 1930 Paul Dirac formulated a quantum theory for the motion of electrons in electric and magnetic fields, the first theory that correctly included Einstein's theory of special relativity in this context. This theory led to a surprising prediction—the equations that described the electron also described, and in fact required, the existence of another type of particle with exactly the same mass as the electron but with positive instead of negative electric charge. This particle, which is called the positron, is the antiparticle of the electron, and it was the first example of antimatter. Its discovery in experiments soon confirmed the remarkable prediction of antimatter in Dirac's theory. A cloud chamber picture taken by Carl D. Anderson in 1931 showed a particle entering from below and passing through a lead plate. The direction of the curvature of the path, caused by a magnetic field, indicated that the particle was a positively charged one but with the same mass and other characteristics as an electron. Experiments today routinely produce large numbers of positrons. Dirac's prediction applies not only to the electron but to all the fundamental constituents of matter (particles). Each type of particle must have a corresponding antiparticle type. The mass of any antiparticle is identical to that of the particle. All the rest of its properties are also closely related but with the signs of all charges reversed. For example, a proton has a positive electric charge, but an antiproton has a negative electric charge. The existence of antimatter partners for all matter particles is now a well-verified phenomenon, with both partners for hundreds of such pairings observed. New discoveries lead to new language. In coining the term "antimatter," physicists in fact redefined the meaning of the word "matter." Until that time, "matter" meant anything with substance; even today school textbooks give this definition: "matter takes up space and has mass." By adding the concept of antimatter as distinct from matter, physicists narrowed the definition of matter to apply to only certain kinds of particles, including, however, all those found in everyday experience. Any pair of matching particle and antiparticle can be produced anytime there is sufficient energy available to provide the necessary mass-energy. Similarly, anytime a particle meets its matching antiparticle, the two can annihilate each another—that is, they both disappear, leaving their energy transformed into some other form. There is no intrinsic difference between particles and antiparticles; they appear on essentially the same footing in all particle theories. This means that the laws of physics for antiparticles are almost identical to those for particles; any difference is a tiny effect. But there certainly is a dramatic difference in the numbers of these objects we find in the world around us; all the world is made of matter. Any antimatter we produce in the laboratory soon disappears because it meets up with matching matter particles and annihilates. Modern theories of particle physics and of the evolution of the universe suggest, or even require, that antimatter and matter were equally common in the earliest stages—so why is antimatter so uncommon today? The observed imbalance between matter and antimatter is a puzzle yet to be explained. Without it, the universe today would certainly be a much less interesting place, because there would be essentially no matter left around; annihilations would have converted everything into electromagnetic radiation by now. So clearly this imbalance is a key property of the world we know. Attempts to explain it are an active area of research today. In order to answer this question, we need to better understand that tiny part of the laws of physics that differ for matter and antimatter; without such a difference, there would be no way for an imbalance to occur. This distinction is the subject of study in a number of experiments around the world that focus on differences in the decays of particles called B-mesons and their antiparticle partners. These experiments will be done both at electron-positron collider facilities called B factories and at high-energy hadron colliders, because each type of facility offers different capabilities to contribute to the study of this detail of the laws of physics—a detail that is responsible for such an important property of the universe as the fact that there is anything there at all! Answer posted January 24, 2002

1931 Karşıelektron (positron) ve karşıproton’ların varlığının ortaya atılması. 1933 Pozitron’un varlığının keşfi (1936 Nobel ödülü, C.D. Anderson) 1956 Karşıproton’un varlığının keşfi (1959 Nobel ödülü, E.G. Segre) 1958 Karşınötron’un varlığının keşfi. 2002 Karşıhidrojen atomları yapıldı ve varlıkları gösterildi (CERN, Bilim ve Teknik-Aralık 2002).

PARÇACIKLARIN YOKOLUŞU Bir parçacık kendi karşı-parçacığı ile karşılaştığı zaman, ikisi birbirini yok eder. Parçacıkların ikisi de yok olup enerjileri başka bir şekle dönüşür. YENİ PARÇACIKLARIN OLUŞMASI Gerekli kütle-enerjiyi oluşturmaya yeterli enerji bulunduğu zaman, bir parçacık ve –karşı parçacık çifti oluşabilir. Madde enerjinin bir şeklidir, ve en yoğun bir halidir. Photons of enormous energy in the cosmic rays were being transmuted into pairs of electrons and positrons. Radiation-light-was changing into matter in accordance with Einstein’s famous law of the equivalence of mass and energy. p. 210 To us this would appear as if an electron and positron had suddenly crashed head-on and vanished amid a burst of radiation – matter transmitted back into energy. p. 217 Like the photon, electrons and positrons jump into and out of existence. p. 221 Now a neutron can become a proton by shedding an electron and neutrino, and a proton can become a neutron by absorbing them. .. fast rally in tennis. The neutron serves, and in serving becomes a proton. The original proton receives, and in receiving becomes a neutron. .. p. 222 Thus surrounding the neutrons and protons of the nucleus is a ghostly halo of electrons and neutrinos fluctuating uncertainly between existence and nonexistence. This electrical halo of wavicles is linked with the electromagnetic fields that Maxwell had conceived so many years ago as the seat of Faraday’s tubes of force.

14 Elektron ve Pozitronun Birbirini imha Edişi
Annihilation of an electron and positron: When an electron and positron collide at high energy they can annihilate to produce D+ and D- mesons. Frames 2 and 3 show the annihilation of the electron and the positron into a virtual gamma or virtual Z boson. In frame 4, a charm quark and a charm antiquark emerge from the gamma/Z. In frame 5 they begin moving apart. In frames 6 and 7, a color force field develops between them. The energy in the force field increases with the separation of the quarks. When there is sufficient energy in the force field (frame 7), the energy is converted into a quark and an antiquark. This happens because energy and mass are equivalent according to the relation E=mc^2. In frames 8-10, the quarks separate into distinct, particles: the D+ (a c quark and anti-d quark) and D- mesons (an anti-c quark and a d quark).

15 milyar sene evvel, eşit miktarda madde ve karşımadde kapsayan bir kütle topu (enerji) patladı. Kainat genişlemeye devam ediyor. Nedense, Madde + Karşımadde = Radyasyon oluşmadı, ve kendi kendine imha önlendi. Tabiat MADDE’yi onun zıt yüklü ikizi KARŞIMADDE’ye tercih etti (CP ihlali) . Scientists figure dark matter must exist because of the way galaxies rotate. In simple Newton's-first-law terms, moving things will remain moving in a straight line unless some force causes a change in direction. For the stars in a galaxy to remain in orbit around the galaxy's center, some force must be acting on them, and the only possible candidate, at such distances, is gravity. But the gravity attributable to the stuff we can see is way too feeble to "glue" galaxies together. It's dark matter -- or more exactly, the gravity it exerts -- that must supply the force holding galaxies together, and lots of dark matter is needed to do the job. The numbers seem to change each month, but roughly 80 percent of all matter in the universe is that unseeable flavor. So it doesn't take an astrophysicist to realize that if we want to understand the universe, we've got to transcend today's bumper-sticker level of knowledge about dark matter.

Değişik haller: Katı, sıvı, gas (ve plasma) (H2O: Buz, su, buhar) Enerji: Değişik haller: Kinetik, potansiyel, termal, kimyasal, elektrik Nötrino: The fundamental particle? Güneş: Saniyede 5 milyon ton madde enerjiye dönüşmektedir.

17 KARA DELİKLER: Kara delik: Uzayda yoğunluğu sonsuza yakın noktalar. Büyük bir yıldız karadelikte elektrondan az bir yer tutar. 1783: Varlıkları ileri sürüldü. 1915: Einstein’in izafiyet teorisi “tekil nokta”ların varlığını öngördü. 1989: V404 Cygnui Karadeliği keşfedildi. Kütlesi 12 güneşe eşit. 1995: NGC4261 kara deliği keşfedildi. Kara delikler, büyük kütleler uzayda görülmeyen bir noktaya doğru emilirken farkedilir. Karadeliklerden ışık bile kaçamaz (Stephen Hawking: Bir miktar radyasyon kaçar) NİYE BEYAZ DELİK OLMASIN? Sources: (Hallym University, Korea) The gravitational pressure in the little stars is so intense that electrons and protons fuse to become neutrons, which are packed together at incredible density. Many neutron stars spin a dozen or more times per second, emitting jets of X-rays. One spins so rapidly that its surface moves at one-seventh the speed of light!

18 Toz Bulutundan Düzenli Yapılara: Bir Arada Tutan ‘Görülmeyen Etki’ Ne?
Atom Elektron ve protonlar zıt yüklü olmasaydı, hiçbir yapı olmayacaktı. Atom çekirdeğinde protonları, protonda quarkları “güçlü kuvvetler” bir arada tutar. 1 proton: Hidrojen; proton: Oksijen 26 proton: Demir; proton: Altın Kaynak: :Lavrence-Berkeley Nat Lab, USA. Toz?? Quarks Proton Atom Molekül

19 Maddeyi Bir Arada Tutan Kuvvetler
Kuvvetler icin bu model, mevcut parçacıkların oluşumunu ve kütlelerini öngöremiyor. Model faydalı, ancak mükemmel değil. Electromagnetism Electromagnetic forces are also familiar. Most everyday forces, such as the support of the floor or friction, are due to the electromagnetic forces in matter that resist displacement of atoms or electrons from their equilibrium position in the material. Oppositely charged objects such as a proton and an electron attract one another. Particle with the same charge repel one another. In particle processes the forces are described as due to to the exchange of particles; for each type of force there is an associated carrier particle. The carrier particle of the electromagnetic force is the photon. Depending on their energy, they are called gamma rays, light, microwaves, radio waves, etc. There is a RESIDUAL effect of the electromagnetic interaction due to their charged constituents, which causes the atoms to bind together to form molecules GRAVITY In 1918, J. Lense and H. Thirring expanded on Einstein's general relativity to predict that a spinning object would also drag space-time along with it – confirmed in 1997 after studies of spinning black holes and neutron stars. For spinning objects, gravity causes a whirling depression. Space is no longer flat, or even just warped - it is twisted as well. Twisting creates a "gravetomagnetic force" which only exists when a massive object rotates. And since space-time affects matter, this gravetomagnetic force will cause other matter to move. Is gravity a particle or a wave? Einstein described gravity as warped space-time, but there is also the theory that gravity is carried by hypothetical particles called gravitons. Is this a situation like the wave- particle duality of light, in which it is more convenient to think one way sometimes and another at other times? Jeffrey De Glopper Palmdale, Calif. Bradley Carroll, a professor of physics at Weber State University in Ogden, Utah, responds: "According to modern physics field theories, each of the four basic interactions (a better term than 'force') is mediated by a type of particle: "The strong (nuclear) interaction is carried by gluons. (This is the interaction that holds together the particles in the nuclei of atoms.) "The electromagnetic interaction is carried by photons. (This is the interaction responsible for all electrical and magnetic phenomena.) "The weak (nuclear) interaction is carried by weak bosons. (This is the interaction that governs certain radioactive decays, such as beta decay.) "The gravitational interaction is carried by gravitons. (This, of course, is the interaction that gives rise to the familiar pull of gravity.) "Although the graviton has yet to be observed, some of its hypothesized properties are known. It is a massless particle having no electrical charge. Its spin (a property of subatomic particles that is not directly analogous to the rotation of a macroscopic object like a top) is twice that of the other field particles listed above; in technical terms, its spin is 2 hbar instead of 1 hbar, where hbar is Planck's constant divided by 2 pi. "Two masses attract each other gravitationally because they are constantly exchanging virtual gravitons, just as two electrically charged particles are drawn together--or repelled apart--by the exchange of virtual photons. (A 'virtual particle' is one that cannot be directly detected.) This exchange happens at all times. Gravitational waves, in contrast, can arise when an object undergoes an acceleration. Asymmetric supernova explosions or collisions between neutron stars are the kinds of events that could produce powerful blasts of gravitational waves. Gravitational waves have been indirectly detected in certain binary neutron star systems, in which the energy carried off by those waves causes observable changes in the stars' orbits. "Virtual gravitons pass between two objects even when there are no gravitational waves present (for instance, when the masses are at rest), so it really isn't correct to say that gravity is a wave. "An analogy with an electrically charged particle might help clarify the situation. When a charged particle is at rest, it is surrounded by a static electric field (no waves). If another charged particle encounters this field, it experiences a force. The quantum view would describe this in terms of an exchange of virtual photons by the two particles. On the other hand, if a charged particle is accelerated, its electric field is ' shaken' to produce an electromagnetic (light) wave that spreads out from the particle. In this case, the energy and momentum of the light wave are carried by real, detectable photons. "In a similar manner, when a massive particle is at rest, it is surrounded by a static gravitational field (a static curvature of spacetime, no waves) . If another massive particle encounters this field, it experiences a force that can be described in quantum terms as an exchange of virtual gravitons by the two masses. On the other hand, if a massive particle is accelerated, its gravitational field is 'shaken' to produce a gravitational wave that spreads out through spacetime from the particle. The energy and momentum of that gravitational wave are carried by real gravitons." Force Particles: g Photon; better known to us as "light"; neutral; carries electromagnetic force W,Z W and Z bosons very heavy; W is charged, Z is neutral; carry the weak nuclear force g gluon, carries the strong nuclear force, comes in 8 color combinations G graviton hypothesized mediator of gravitation; never observed Particles that carry force: BOSONS Some particles are the constituents of matter (like neutrons), and other particles are the force-carrier particles (like photons). For every type of fundamental force, there is a particle that "carries" that force. In particle processes the forces are described as due to the exchange of particles, called "force carriers”. For each type of force there is an associated carrier particle. They belong to the class of particles, called bosons. The force carrier can be produced or absorbed only by particles that have "charges" for that interaction. Gravitation acts on everything, but it is a very weak interaction unless large masses are involved. The Big Four Forces: The present understand of physicists and astronomers is that all interactions between matter are mediated by only four forces - and in fact two of these forces (electromagnetism and the weak nuclear force) have already been "unified" into a more general force which describes both as different sides of the same coin. Hopes for a quick unification of a third, strong nuclear force with these two - a "Grand Unified Theory" were dashed in the early 1980's when the IMB experiment and Kamiokande failed to find the signal of proton decay predicted by the favored candidate for this theory failed to materialize. Super-Kamiokande continues to search for proton decay, the discovery of which could truly spark a revolution in physics. A somewhat different approach termed "Supersymmetry" is now the preferred point of departure among theorists. Discovery of the even one of the many new particles needed to make Supersymmetry a reality, either at Fermilab or the future LHC machine at CERN would shake the world of physics to its foundations. The fourth force, gravity remains resistant to theoretical unification with the other three, since the quantum effects which must play a role in any such theory are far beyond the reach of contemporary experiments. Gravity, inextricably bound up with the question of mass, is ironically one of the main reasons for excitement over the announcement of discovery of neutrino mass. BOSON and MESON 1961 Prediction of unavoidable massless bosons if global symmetry of the Lagrangian is spontaneously broken . 1986 Firm establishment of the properties of W+, W-, Z bosons 1983 Discovery of W and Z bosons by the UA-1 and UA-2 experiments at CERN. 1961 Confirmation of the existence of the OMEGA(783) meson 1964 Confirmation of the ETAPRIME(958) meson 1993 First direct and precise measurement of the B/S meson mass Çekim Zerreleri: Kudret-i ezeliyenin feyz-i tecellisi ve eser-i ibdaı olan kâinattaki kuvvetten umum zerrata, herbir zerreye birer zerre-i cazibe halk ve ihsan ederek ve ondan kâinatın rabıtası olan müttehid, müstakil, muhassal cazibe-i umumiyeyi inşa ve icad etmiştir. Nasılki zerratta reşehat-ı kuvvet olan cazibelerin muhassalası bir cazibe-i umumiye vardır. O da kuvvetin ziyasıdır. (Bediüzzaman Said Nursi, Sünuhat, ~1910) Kaynak:

20 GÖLGE parçacıklar: Manevî kalıplar mı?
Yeni araştırma: Supersimetri (CERN, Fermilab) Her temel parçacığın bir “gölge” kuvvet taşıyıcı parçacığı, ve her kuvvet taşıyıcı parçacığın da bir ‘gölge” madde parçacığı vardır. Kütle parçacığı ile kuvvet taşıyıcısı arasındaki bu ilişkiye supersimetri denir. Supersymmetry Some physicists attempting to unify gravity with the other fundamental forces have come to a startling prediction: every fundamental matter particle should have a massive "shadow" force carrier particle, and every force carrier should have a massive "shadow" matter particle. This relationship between matter particles and force carriers is called supersymmetry. For example, for every type of quark there may be a type of particle called a "squark." No supersymmetric particle has yet been found, but experiments are underway at CERN and Fermilab to detect supersymmetric partner particles. Kaynak: :Lavrence-Berkeley Nat Lab, USA.

Yerçekimi olmasaydı, yeryüzünde hiçbir şey kalmazdı. Herşeyi aşağıya çeken bir “etki” sanki bir “hayalet” var. Bu hayaletin aklı, iradesi, vs olsaydı, bir “ruh” olacaktı. Aklı, iradesi, vs olmayan bir ruh da bir “kanun” veya bir “etki” olurdu. LAWS GOVERNING DIFFERENT PHENOMENA: Law over Matter Diffusion Law: - Fourier’s Law of heat conduction - Fick’s law of mass diffusion - Ohm’s Law of electrical conduction - Newton’s law of viscosity (momentum transfer) Result in the same differential equation for: Heat conduction, Mass diffusion, Potential Flow in Fluids, Potential distribution in Electric fields Gravity

MADDE? Bir toz bulutu, atom yığını (parçacıklar)   Ve/veya: ENERJİ? Her tarafa yayılmış enerji (EM dalga –Bir TV yayını gibi) Kainatta herşey parçacık veya dalgalardan mı yapılmıştır?

Atom/dalga (Madde/Enerji)’da: - HAYAT, - ŞEFKAT, SEVGİ, - ŞUUR, - GÜZELLİK, ADALET - HAYAL, - İLİM, - GÖRME, İŞİTME, TATMA, vs VAR MI? Parçasında olmayan, bütününde olabilir mi? O halde: Kainatta madde/enerji ile beraber hayat, şefkat, şuur, ilim, görme, vs temel yapı taşları yaygın olarak olmalıdır.

EM dalgalar (TV): Taş, ağaç, hayvan, insan Malzemesi: Enerji Dalga/Parçacık (Dünya):

25 EM Varlıklar ve EM Dünyalar (TV)
Bir odada, 100’lerce “imaj dünyaları” vardır. Bu imaj dünyaları devamlı olarak yenileniyor. Hiç bir yer işgal etmez, hepsi aynı yere sığarlar. Herşey “enerji”den yapılıyor. Elektrik (yayın) kesilince, bir dünya yok oluyor. Gelecekte imajlar üç boyutlu da olabilir.

Atomaltı dalga-parçacıklar hareket halindedir, ve onları “dondurmak” mümkün değildir. Bir monitördeki piksel’ler enerji içın sadece kalıp mı? Giden dalga-parçacıklara ne oluyor? Karadeliğe mi gidiyorlar? İnsan vücudu da daimî olarak değişiyor, ve kendini yeniliyor. Ama insanda değişmeyen şeyler var, ve bunlar madde olamazlar.

27 DİGİTAL DÜNYA Temel yapı taşları: 0-1 (açık/kapalı veya varlık/yokluk)
CD, elektrik kapalı iken: Sadece bilgi aleminde var oluş. Elektrik açık: Görsel alemde var oluş. Elektrik kapalı: Görsel alemden yok oluş. Zaman: Görsel aleme imajların geliş sırası (monitor)

CD, varlıkları “bilgi dünyası”nda daimî olarak tutar. TV, enerjiyi kontrol ve manipule ederek bilgi şeklindeki varlıkları “imaj dünyası”na getirir. “İmaj levhaları” daimî olarak yok olur, ve yenileri gelir (60 levha/s hızında). “Görsel alemdeki imajlar (EM dalga-enerji-madde’den yapılı) daimî olarak değişmektedir.”

29 İlim, kainatta yaygın olarak vardır, ve zaman-mekan üstüdür
İlim, kainatta yaygın olarak vardır, ve zaman-mekan üstüdür. Herşeyin ilmî bir varlığı ve kalıbı vardır. Birşey madde aleminden yok olsa bile, ilim aleminde varlığını sürdürür (çekirdek, genler, vs). İlim insanları, yeni ilim icad etmez; mevcut olan ilme tezahürlerinden hareketle ulaşmaya çalışır. 6. His, İlham: Bizde yaygın ilmi (ilim yayını) alabilecek alıcılar var mı? Rüya alemi: Maddesiz fakat Hayat ve şuur sahibi imajlardan oluşan bir alem mi? İLİM DÜNYASI


31 TV ve YAYIN TV = CIHAZ + YAYIN TV yayını 5 hisle algılanamaz.
TV yayınından haberi olmayan, ses ve görüntünün TV’nin parçası olduğunu zanneder. TV’nin gerçek mahiyeti ancak yayını farkedince anlaşılır.


33 DNA ve GENETİK DNA = Bir torba molekül mü? Yoksa …

34 GÖZ ve GÖRME OLAYI Gören Göz müdür? Gözlük Göz Olabilir mi?
Rüya Görmek İçin Gözleri Açmak Gerekir mi? Atomlardan Göz, Sinir, Hatta Beyin Yapilabilir. Görmüyen seylerden ‘Gören Bir Şey’ yapilabilir mi? Göz için gözlük ne ise, görme için de göz-sinir-beyin odur.


Madde (Enerji) Madde Hayat Şuur Sevgi Görme Bilgi Şimdiki Görüş: TEK BOYUTLU Madde Hayat Şuur Sevgi Görme Bilgi MADDE (Beden, Dış) Yeni Bakış: ÇOK KATMANLI MÂNÂ (Ruh, İç) “Zaman-mekan üstü”

İNSAN: Nedir? BEDEN ve RUH MADDE ve MANA Doku, Beyin, Genler (100 trilyon hücre) İNSAN = Madde/Enerji (Beden) (Fizik kanunlarina tabi) Yoksa İNSAN = Madde/Enerji (Beden)+Mana (ruh) (Hayat, Şuur, irade, sevgi, enaniyet, güzellik, …) (Zaman ve mekan üstü) Kainatta bedeni olmayan şuurlu canlılar olabilirmi? Ölümden sonra hayat ve şuur ruhla devam edermi?

SÖZ Zehir veya Ziyafet KULAK Lafız (Kabuk) Mânâ (Öz) Titresim Mânâ Sevgi, güzellik Nefret, çirkinlik “Zaman ve mekan üstü” KALB

39 Çikulata deyip geçmeyin: PAKETTE DAHA NELER VAR?
Madde Mide Mânâ Kalb Sevgi Güzellik, incelik Güzel düşünce “Zaman ve mekan üstü”

Varlık, enerji (kudret) hammaddesinden kuvvet (irade) ile yapılmıştır, ve bir atom torbasıdır. ANCAK: Güneşin ışığını alıp yansıtırsa, aydınlık olur. Güzellik ışığını alır ve onu yansıtırsa, güzel olur. Hayat ışığını alır ve yansıtırsa, canlı olur. Şuur ışığını alır ve yansıtırsa, şuurlu olur. Şefkat ışığını alır ve yansıtırsa, şefkatli olur. Ğörme ışığını alır ve yansıtırsa, görür. İşitme ışığını alır ve yansıtırsa, işitir. Sevgi ışığını alır ve yansıtırsa, sever. Beka ışığını alır ve yansıtırsa baki olur.

41 Periyodik Tablo: Elementler
Kimya ilminin alfabesi Periyodik Tablo: Elementler Hava Ateş Toprak Su

42 ŞİFA ve İLAÇ Şifa Şifa Şifa İrade İLAÇ Madde SÖZ, MÜZİK Ses

- Moleküler seviyede üretim yapılması (nanotechnology) - Genlerin manipüle edilmesi (genetic mühendisliği), - Nötrino’nun tam anlaşılması ve onun kullanılması, Görülmez madde ile hayalleri aşan şeyler yapılması, Madde ve mânânın, kabuk ve öz gibi, aynı bütünün parçaları olduğunun görülmesi, Fen ve din ilimlerinin Barışması ve Hatta İşbirliği, Varlıkların çok boyutlu (madde+….) olduğunun farkedilmesi, ve ilmin önünün açılması, Eşyanın ve insanın tabiatlarının daha iyi anlaılması. ???

44 EŞYA ve ESMA “Bütün mevcûdâtın hakaikı, bütün kâinatın hakikatı; Esmâ-i İlahiyeye istinad eder. Herbir şeyin hakikatı, bir isme veyahut çok Esmâya istinad eder.” “Hakikî hakaik-i eşya, Esmâ-i İlahiyedir. Mahiyet-i eşya ise, o hakaikın gölgeleridir.” - Sözler, 1930 (Bediüzzaman) EŞYA ve ESMA “Bütün mevcûdâtın hakaikı, bütün kâinatın hakikatı; Esmâ-i İlahiyeye istinad eder. Herbir şeyin hakikatı, bir isme veyahut çok Esmâya istinad eder. Eşyadaki sıfatlar, san'atlar dahi, herbiri birer isme dayanıyor.” “Hakikî hakaik-i eşya, Esmâ-i İlahiyedir. Mahiyet-i eşya ise, o hakaikın gölgeleridir. Hattâ birtek zîhayat şeyde, yalnız zâhir olarak yirmi kadar Esmâ-i İlahiyenin cilve-i nakşı görünebilir.” - Sözler, 1930 (Bediüzzaman)

45 Sorular ve Katkılar


Benzer bir sunumlar

Google Reklamları