Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

MATEMATİK VE BİLİM Çok eski zamanlarda beri matematik ile bilimin birbiri ile örgülü olduğu düşünülmektedir. Galileo birbirini takip eden benzer deneysel.

Benzer bir sunumlar


... konulu sunumlar: "MATEMATİK VE BİLİM Çok eski zamanlarda beri matematik ile bilimin birbiri ile örgülü olduğu düşünülmektedir. Galileo birbirini takip eden benzer deneysel."— Sunum transkripti:

1 MATEMATİK VE BİLİM Çok eski zamanlarda beri matematik ile bilimin birbiri ile örgülü olduğu düşünülmektedir. Galileo birbirini takip eden benzer deneysel sonuçları araştırdı. Mesafe ile zaman arasındaki ilişkiyi inceledi.

2 Mesafe ile zaman sayıları arasındaki ilişkiyi temsil edecek bir matematiksel model geliştirdi. S= Bu sonuç düşen bir kütlenin dünyanın yüzeyindeki yerçekimi sabiti durumunu belirginleştirdi.

3 Galileo diyor ki: Yazılan karakterlerin dili ve yorumlanması algılanmadıkça evren anlaşılamaz. Yazılan karakterlerin matematiğin diliyle yazıldığını ve matematiğin dili anlaşılmadan yazılan karakterlerin birini bile anlamanın mümkün olmadığını söylüyor.

4 Galileo evrenin düzenini doğal bir kanunla direk olarak fark edemedi fakat gözlemlerinden kaynaklanan bu matematikselleştirmeyi ifade etti. Newton, Galileo’nun işi üzerinde inşa ederek evrenin yerçekimi teorisini geliştirdi.Newton, iki kütle arasındaki mesafe(r),iki kütlenin miktarı(m 1,m 2 ) ile yerçekimi kuvveti(F) arasındaki ilişkiyi F=G şeklinde ifade etmiştir.

5 MATEMATİKSEL MODELLER Matematik kısa formüllerle karmaşık ifadeleri anlaşılabilir kılarak bizlere yarar sağlamaktadır. Farklı anadillerdeki benzer ifadeleri anlayabilmemiz için matematiğin evrenselliğinden faydalanıyoruz. Matematiksel modelin ilk özelliği kısa olmasına rağmen özlü olmayı sağlamaktır. Çiçeklere ait K5C5A∞G∞ bir örnek olarak verilebilir. Seçili özelliklerin şematik diyagramına örnek olarak bu formül verilebilir.

6 Benzer formüller kimya ve fizikte de ortaya çıkmıştır. Su için H 2 O bir modeldir. Suyun kimyasal bileşimini tanımlar. Uranyumun proton sayılarını gösteren 2 farklı izotopunu karakterize etmek için kullanılan formüller 92 U U 238

7 Matematiksel Modeller İfadenin evrenselliğini ve ekonomikliğini sağlar Bazı özellikleri özetler Bütün karmaşık sistemlerin kendi parçalarının içinde tamamen anlaşılabileceğini söyleyen bir teori. Karmaşık sistemlerin daha basit bileşenler içinde analizi Solgun ve sınırlı olanı gerçek ve zengin olan ile değiştiriyor.

8 Matematiksel Modeller Tamamen bir temsil değil,seçici bir temsil yapıyor Kişiye ait düzenli,tutarlı gözlemler sunar Kişinin aklına gelen,ima ettiği ve tahmin edilemeyenleri hakkında sübjektifliği sağlar Dilin sembolik formda iyi tanımlanması sağlanarak iyi bir temsil seçilir.

9 Kelimesi kelimesine(aynen) tanımlanmalar anlaşılabilir olamayabileceği için kısa form halinde sınırlandırılmış temsili model ile karar verilebilir hale getiriliyor. Örneğin alttaki kimyasal birleşim formülünü kelime kelime anlatmaktan ziyade; CUO+H 2 SO 4 CUSO 4 +H 2 O

10 Kimyasal formüldeki bu sembollerin anlamının bilinen matematiksel anlamdan farklı olduğu bilinmektedir. Örneğin CUO ifadesinin bir çarpma olmadığı bilinmektedir Benzer elementlerin eşitliğin her iki kenarında bulunması birleşim zorunluluğunu ifade eden denklemler olduğu bilinmektedir.

11 Kimyasal denklemler matematiksel modele bir örnektir. Bu matematiksel model daha fazla kavrama sağlamaktadır. Matematiksel modelleme safhası ile gelişebilen ve kabul edilebilir tanımlamalar doğru şekilde yapılmak zorundadır.

12 Modelin tahmin etmek için araştırma yapıldığında bizim faydalı ve anlamlı deneyimsel kanıtlarımız tutarlı hale getirilmiş oluyor. Model karşı tarafın reddedemeyeceği kanıtlar sağlamakta ve kuralları belirginleştirmektedir.

13 Matematiksel modeller gerçek dünyanın tanımlanmasının basit bir formu değildir. Teorik dünyada modeller ilk önce geçici bir süre için çözüm olurken daha sonra gerçek dünyada meydana gelenler ile ilişkilendirilirler. Teorik dünyadan gerçek dünyaya geçiş için bu kurallar seçilmiştir.

14 Matematiksel modelin 3 kısmı var 1)Populasyon(Toplum) modeli: gerçek nesnelerin ve olayların nasıl temsil edilmesi gerektiğini tanımlar 2)Geçiş modeli: modelin nasıl uygulanacağına dair kurallar içerir. 3)Tahmin edilmiş durum modeli:Geçiş modelinin kuralları uygulandıktan sonra populasyon modelinde nelerin olduğunu tanımlar

15 sembolik enactive ikonik sembolik fiziksel sembolik fiziksel sembolik ikonik Geçiş modeli Populasyon modeli Tahmin edilmiş durum modeli

16 Gerçek dünyada meydana gelme sırası 1)Populasyon(Toplum) modeli: gözlemlenebilir nesneler,olaylar,fenomenler 2)Geçiş modeli:gözlemlenebilir değişiklik ve davranışlar 3)Tahmin edilmiş durum:yorumlama, deneysel tecrübeye dayanan test

17 Örneğin matematiksel bir modelde Bir sembolik populasyon modeli m i =gezegenin kütlesi Sembolik bir geçiş modeli Ve sembolik tahmin edilmiş durum Vi=…….

18 F=ma tashihi mümkün bir ifadedir çünkü F kuvvet,m kütle,a ivme olduğunda doğru olabilir ve daha sonra newton’un 2.kanunu tarafından tasdik edilmiş bir durumdur. Matematiksel aksiyomlar veya teoriler geliştirilip tasdik edildikten sonra uygulanan tanımlamalar olmaktadır.

19 d=gazın yoğunluğu

20 1.43 değerinin gözlenen d ve p değerlerinin oranlarının limiti olduğu ifade edilmektedir pdd/p

21 MATEMATİKSEL MODELLER Populasyon modeli:Bilimin seçici ve önemli bakış açısını matematiksel durumların özlü tanımlamalarını inşa etmek için kullanırlar Geçiş modeli:matematiği dilin ekstra kurallarının sebebi olarak kullanır

22 Tahmin edilmiş durum modeli: Bilimin kurallarını(gözlemler,kanunlar) ve matematiksel kuralları(teorem vs.) kullanarak geliştirmek Populasyon model içindeki matematiksel durumları geçiş modeli kullanarak tahmin edilmiş duruma sebep olan mümkün durumları araştırmak

23 BİLİM OKULLARINDA MATEMATİK Matematiksel modeller ile deneysel bilim arasındaki ilişki bilim adamlarının eğitiminde derinlerde gömülü matematiği tahmin etmeye sebep olacaktır. matematiksel ve bilimsel eğitim arasındaki bağlantı için matematiksel modellerin önemi ilk başlarda geliştirildi de Forbe ilk adımı atmış

24 Bristol üniversitesinde Thompson(1987) de 137 matematiksel problem içeren bir kitap yayınladı. 137 problemin 129 tanesinin analiz içeriği gösterildi. Öğrencilerin fizik ve matematik seviyelerini ölçen araştırmalar yapıldı.

25 FİZİK ABCDEF MAT EMA TİK A B C D E F00 0

26 FİZİKTE A SEVİYEDE OLAN ÖĞRENCİLERİN MATEMAİK KONULARINDAKİ MİNUMUM GEREKSİNİMLERİ

27 A SEVİYEDE MATEMATİKTE BAŞARILI ÖĞRENCİLERİN ETKİLENME DURUMLARI


"MATEMATİK VE BİLİM Çok eski zamanlarda beri matematik ile bilimin birbiri ile örgülü olduğu düşünülmektedir. Galileo birbirini takip eden benzer deneysel." indir ppt

Benzer bir sunumlar


Google Reklamları