Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

Çok Örneklem Cucconi Testi ve Bir uygulaması Mutlu Umaroğlu UBK 16 – Antalya Çolaklı 10-12 Eylül 2014.

Benzer bir sunumlar


... konulu sunumlar: "Çok Örneklem Cucconi Testi ve Bir uygulaması Mutlu Umaroğlu UBK 16 – Antalya Çolaklı 10-12 Eylül 2014."— Sunum transkripti:

1 Çok Örneklem Cucconi Testi ve Bir uygulaması Mutlu Umaroğlu UBK 16 – Antalya Çolaklı Eylül 2014

2 Giriş Grup karşılaştırması yapan testler en önemli istatistiksel yöntemlerden biridir. Bu testler sadece konum parametresini test eder. Ölçek parametresini karşılaştıran çeşitli testler de vardır. Çoğu çalışmada konum parametresi test edilmesine rağmen bazı tür çalışmalarda hem konum hem de ölçek parametrelerinin test edilmesine gerek duyulur.

3 Giriş Biyomedikal, biyoinformatik, iklim dinamikleri, finans gibi alanlardaki bazı çalışmalarda konum ve ölçek parametresinin değişimi birlikte incelenmelidir. Tıpta tedavi sürerken ortalama ve değişkenliğin her ikisinin birden değişmesi önemli rol oynayabilir. Örneğin diyabet tedavisinde glikoz düzeyinin hem ortalama hem de değişkenlik açısından farklılaşması önemli olabilir.

4 Giriş Bu tür durumlarla ilgili ilk kez Tukey 1959’da yeni bir yöntem üzerine çalışmıştır. Ancak bu yöntemde güçten kayıp söz konusudur. Konum ve ölçek parametresini eşanlı olarak inceleyen testler: Cucconi(1968), Lepage(1971), Podgor-Gastwirth(1994), Neuhäuser(2000), Zhang(2006) ve Murakami(2007).

5 Lepage Testi Konum ve ölçek parametresinin değişimini eş anlı olarak inceleyen testler içinde en bilinenidir. İki örneklem konum-ölçek testi olarak konum parametresini inceleyen Wilcoxon testi ve ölçek parametresini inceleyen Ansari-Bradley testinin kombinasyonundan oluşur.

6 Lepage Testi Wilcoxon test istatistiği Ansari-Bradley test istatistiği Beklenen değer Varyans W: AB: E: V: n çift n tek

7 Cucconi Testi Eş anlı olarak konum ve ölçek parametresini test eder. İlk kez 1968 yılında önerilmiştir ancak Cucconi testi İtalyan yerel yayınında yayımlandığı için az bilinmektedir. 2009’dan bu yana Marozzi bu yöntem üzerine çalışmaktadır.

8 Cucconi Testi Marozzi, Cucconi testi üzerine çalışmış ve ilk defa exact kritik değerler tablosunu oluşturmuştur (Cucconi asimptotik kritik değerler tablosu). Tip I hata olasılığı ve güç üzerine de çalışmıştır. Çok örneklem Cucconi testini oluşturmuştur.

9 Cucconi Testi Cucconi testi ile ilgilenilmeye başlanmasının temel nedenleri:  Lepage testinden önce yayınlanması  Konum testlerinin ve ölçek testlerinin birleştirilmesinden oluşturulmaması  Lepage testi ile karşılaştırıldığında güç ve test istatistiğinin analitik olarak hesaplamasında sorun çıkmaması  Test istatistiğini hesaplamanın diğer yöntemlere göre daha kolay olması

10 Cucconi Testi Test Hipotezi: Cucconi test istatistiği

11 Cucconi asimptotik kritik değerler tablosu

12 Çok Örneklem Lepage Testi İkiden fazla grup için konum ve ölçek parametresinin eşanlı değişimini inceleyen testler içinde en bilinenidir. Wilcoxon ve Ansari-Bradley testinin birleşiminden oluşur. Benzer amaçla geliştirilmiş Murakami MH1 ve MH2 testi de vardır. Bu testler de Lepage tipi testlerdir.

13 Çok Örneklem Lepage Testi Test istatistiği:

14 Çok Örneklem Cucconi Testi Cucconi testi iki grup için eşanlı olarak konum ve ölçek parametresini test etmektedir. Marozzi, Cucconi testi üzerinde çalışmış ve bu testi ikiden çok grup için genelleyen yeni bir yöntem geliştirmiştir. 2013’de geliştirilen bu yönteme göre ikiden çok grup için eşanlı olarak konum ve ölçek parametresini test etmek mümkündür.

15 Cucconi Testi Test Hipotezi: Test istatistiği: Çok Örneklem Cucconi Testi Test Hipotezi: Test istatistiği:

16 Çok Örneklem Cucconi Testi Test istatistiği:

17 Çok örnek Cucconi Testi µ1>µ2 ve σ1=σ2 olduğunda daha büyük olma eğilimindedir. Böylece U1 0’dan büyük olma V1 0’dan küçük olma eğilimindedir. µ1<µ2 olduğunda tam tersi doğrudur. µ1=µ2 ve σ1>σ2 olduğunda daha büyük olma eğilimindedir. Böylece U1 0’dan büyük olma eğilimindedir.

18 Çok Örneklem Cucconi Testi Çok örneklem Cucconi Testi bir permutasyon testidir ve P değeri permutasyon üzeriden hesaplanır. Permütasyon sayısı MC test istatistiğini etkilenmez sadece P değeri üzerinde etkilidir. Permutasyon testini uygularken çok örneklem Cucconi test istatistiğinin asimptotik dağılımı önemli değildir.

19 Çok Örneklem Cucconi Testi 1.Gözlenen verilerden MC istatistiği hesaplanır ve MC 0 olarak atanır 2.Örneklemler birleştirilir ( X=(X 1,X 2,…,X k ) ) ve birleştirilmiş örneklemden rasgele olarak örnek seçilerek MC istatistiği hesaplanır ve MC 1 olarak atanır 3.2. adım B kez tekrarlanır (MC2, MC3,…,MC B ) 4.Kestirilen P değeri α’dan küçük veya eşitse H 0 hipotezini reddedilir

20 Örnek 54 yiyecek firmasının sattığı bir et ürünündeki sodyum değerleri miligram cinsinden aşağıda verilmiştir. Bu ürün içerdiği et türüne göre (kırmızı et, beyaz et ve domuz eti) sınıflandırılmıştır. Bu sınıflar arasında konum-ölçek parametresi bakımından anlamlı bir farklılık var mıdır?

21 Örnek Kırmızı et Domuz eti Beyaz et

22 Örnek Ortalama %95 Güven Aralığı OrtancaVaryans Std. SapmaÇAGEn KüçükEn Büyük Alt SınırÜst Sınır Kırmızı Et 401,15353,21449,09380,510492,87102,44158, Domuz Eti 418,53370,26466, ,0293, Beyaz Et ,43502, ,7584, Permütasyon Sayısı CucconiP 12, , ,1 1002, , , , , , , , , ,07494

23 Tartışma - Sonuç Geleneksel yöntemlerde konum-ölçek probleminin çözümünde konum testi ve ölçek testinin birleşiminden yararlanılır. MC testinde test istatistiği sadece ranklar üzerinden hesaplanır. Yokluk hipotezi doğru ise test istatistiğinin 0’a yakın olması beklenir. Eğer en az iki dağılım fonksiyonu farklı konum-ölçek parametresine sahip ise test istatistiği 0’dan farklıdır. Dağılımların farkı arttıkça test istatistiği büyür.

24 Tartışma - Sonuç MC test istatistiği yeniden örnekleme temelli yöntemler kullanılarak analitik olarak hesaplanabilir. Hesaplamalarda kullanılan iki önemli etken Tip I hata ve güçtür. MC testi asimptotik dağılımlardan bağımsız herhangi bir veri setine uygulanabilir. MC istatistiği U k ve V k arasındaki Mahalanobis uzaklığının yarısının ortalamasına eşittir.

25 Kaynaklar Marozzi M., The Multisample Cucconi Test, Statistical Methods & Applications, Wiley, 2014 Bonnini S., Corain L., Marozzi M., Salmaso L., Nonparametric Hypothesis Testing: Rank and Permutation Methods with Applications in R ISBN: , Wiley, 2014 Marozzi M., Some Notes on the Location-Scale Cucconi Test, Journal of Nonparametric Statistics, 2009 Marozzi M., Nonparametric Simultaneous Tests for Location and Scale Testing: A comparison of Several Methods, 2013 Marozzi M., A Modified Cucconi Test for Location and Scale Change Alternatives, 2013 Lepage Y., A combination of Wilcoxon's and Ansari-Bradley's statistics, Biometrika, 1971 Rublik F., The multisample version of The Lepage Test, Kybeynetika,2005 Neuhauser M. Leuchs A., Ball D., A new Location-Scale test based on a combination of the ideas of Levene and Lepage, Biometrical Journal, 2011

26 R Kodları MultiSampleCucconiTest <- function(pooled.sample, sample.sizes, B){ # Outer function: Inner fonksiyon yardimiyla permutasyona dayali test istatistiğini hesaplar # Argumanlar: # pooled.sample: birlestirilmis orneklem # sample.sizes: orneklem genisligi vektoru # B: permutasyon sayisi # Ciktilar: # mc.test[1]: MC test istatistigi # mc.test[2]: MC testinin p degeri MultiSampleCucconiStat <- function(pooled.sample, sample.sizes){ # Inner function: MC test istatistiğini hesaplar # Argumanlar: # pooled.sample: birlestirilmis orneklem # sample.sizes: orneklem genisligi vektoru # Ciktilar: # MC test istatistigi sample.sizes <- c(0, sample.sizes) n <- sum(sample.sizes) K <- length(sample.sizes) ranks <- rank(pooled.sample) contrary.ranks <- n+1-ranks groups.ranks <- vector("list", K-1) groups.contrary.ranks <- vector("list", K-1) cum.sample.sizes <- cumsum(sample.sizes) for (k in 1:(K-1)){ groups.ranks[[k]] <- ranks[(cum.sample.sizes[k]+1):(cum.sample.sizes[k+1])] groups.contrary.ranks[[k]] <- contrary.ranks[(cum.sample.sizes[k]+1):(cum.sample.sizes[k+1])] } sample.sizes <- sample.sizes[2:length(sample.sizes)] means <- vector(, K-1) st.dev <- vector(, K-1) for (k in 1:(K-1)){ means[k] <- sample.sizes[k]*(n+1)*(2*n+1)/6 st.dev[k] <- (sample.sizes[k]*(n-sample.sizes[k])*(n+1)*(2*n+1)*(8*n+11)/180)^0.5 } covariance <- -(30*n+14*n^2+19)/(8*n+11)/(2*n+1) u.stat <- vector(, K-1) v.stat <- vector(, K-1) partial.c.stat <- vector(, K-1) for (k in 1:(K-1)){ u.stat[k] <- (sum(as.vector(groups.ranks[[k]])^2)-means[k])/st.dev[k] v.stat[k] <- (sum(as.vector(groups.contrary.ranks[[k]])^2)-means[k])/st.dev[k] partial.c.stat[k] <- (u.stat[k]^2+v.stat[k]^2-2*u.stat[k]*v.stat[k]*covariance) /2/(1-covariance^2) } c.stat <- mean(partial.c.stat) return(c.stat) } # inner fonksiyon sonu mc.test <- vector(, 2) permutation.cucconi.stat <- vector(, B) for (b in 1:B){ pooled.sample.perm <- sample(pooled.sample) permutation.cucconi.stat[b] <- MultiSampleCucconiStat(pooled.sample.perm,sample.sizes) } mc.test[1] <- MultiSampleCucconiStat(pooled.sample, sample.sizes) mc.test[2] = mc.test[1]])/B return(mc.test) }

27 Teşekkürler


"Çok Örneklem Cucconi Testi ve Bir uygulaması Mutlu Umaroğlu UBK 16 – Antalya Çolaklı 10-12 Eylül 2014." indir ppt

Benzer bir sunumlar


Google Reklamları