Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

Gene Set Enrichment Analysis (GSEA) Mehmet Emre Tuncer Refference:Daniel Gusenleitner

Benzer bir sunumlar


... konulu sunumlar: "Gene Set Enrichment Analysis (GSEA) Mehmet Emre Tuncer Refference:Daniel Gusenleitner"— Sunum transkripti:

1 Gene Set Enrichment Analysis (GSEA) Mehmet Emre Tuncer Refference:Daniel Gusenleitner

2 Gen Hastalık İlişkisi Genler bize hastalıklarla ilgili ip uçları verebilmektedir. Bu bilgiler tek bir genden belirgin olarak elde edilebileceği gibi bir çok genin birbirleriyle olan ilişkileriyle de belirlenebilir Bir çok hastalık ya da fenetopik rahatsızlık sadece bir genle ifade edilemeyebilir.

3 Gen Hastalık İlişkisi Çoğu hastalık karmaşıktır ve birden çok geni kapsar. Genler genel olarak bağımsız çalışmazlar, bir bütünün fonksiyonel bir parça olarak çalışırlar.

4 Gen Setlerinin Tanımı Gen kümeleri kendi başlarına biyolojik mekanizmaları ya da karakteristikleri tanımlamada yeterli olmazlar Saf biyolojik bilgiyi temsil ederler, teorik ve deneysel araştırmalarda yardımcı olurlar

5 Gen Kümeleri Data-driven Veri Kümeleri Knowledge-driven Veri Kümeleri

6 Gen Kümeleri Data-driven Veri Kümeleri Genellikle yüksek verimli araştırmalarda ilişkili genleri tanımlamada ve türetmede kullanılırlar

7 Gen Kümeleri Knowledge-driven Veri Kümeleri Gen kümelerini oluşturmak için uzman gerekir. Bunlar genellikle araştırmanın konusuna özeldir. GSEA Knowledge Driven bir yaklaşımı destekler.

8 Gene Set Analysis (GSA) Analizleri bioloji odaklı yaklaşımlara kaydırır. Gen ifadesi data setlerini analiz etmek için fonksiyon ilişkili gen gruplarını kullanır. Tek bir genin analizinden daha güçlü(robust)

9 Gene Set Analysis (GSA) GSEA 3 adımdan oluşur: Enrichment skorunun hesaplanması Significance ın tahmin edilmesi Çoklu hipotez testi için düzenlemeler

10 Gene Set Enrichment Analysis (GSEA) Yapılan Çalışmalar Mootha et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nature Genetics, 2003, 34-3 Subramanian et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, PNAS, 2005, Oron et al. Gene set enrichment analysis using linear models and diagnostics, Bioinformatics, 2008, Bioconductor Package: GSEAlm - Linear Model Toolset for Gene Set Enrichment Analysis

11 GSEA’ nın Amaçları Test edilen iki sınıf içinde aşağı ya da yukarı düzenlenmiş gen kümelerine bakmak. Araştırılan gen kümesinin test edilmiş iki fenotipten farklı ya da aynı olma durumunu test etmektir.

12 Değişik Fenotiplerin Testi Pair-wise Tests: Normal versus Low grade Normal versus High grade Low grade versus High grade SampleDisease Type S1Normal breast tissue S2Normal breast tissue S3Normal breast tissue S4Low grade cancer (Luminal A) S5Low grade cancer (Luminal A) S6Low grade cancer (Luminal A) S7High grade cancer (Basal) S8High grade cancer (Basal) S9High grade cancer (Basal) Gene Expression Data Clinical Data Combined Tests: Normal versus Low/High grade Normal/low grade versus High grade

13 I.)Genler t-test ya da lineer model kullanarak sıralanıyor. Gene Set Enrichment Analysis (GSEA)

14 II.) Gen kümesine üye bilgisi dahil ediliyor

15 Enrichment Score (ES) Sıralanmış Liste (L) nin sınırlarında yoğunlaşan sıralamaları yansıtır Skor L listesinde gezinirken hesaplanır Zenginleştirme skoru random gezinme sırasında sıfırdan en fazla sapmanın olduğu skor olarak belirlenir.

16 Gene Set Enrichment Analysis (GSEA)

17 Subramanian A et al. PNAS 2005;102:

18

19 Permütasyon Testi ES nin significence(önem) ı tahmin edilmelidir. Önem tahmini için Sınıf etiketli permütasyon işlemi yapılır ES için null dağıtım üreten permütasyon yapılır Gözlemlenmiş ES nin deneysel, nominal P değeri bu null dağıtıma göre hesaplanır Bu P değeri gerçek ES yi verir.

20 Gene Set Enrichment Analysis (GSEA)

21 Actual Enrichment Skorun Hesaplanması

22 Çoklu hipotez testi için düzenlemeler Öncelikle ES değeri normalize edilir. Bunun sonucunda NES oluşur. Daha sonra False positiveler kullanılarak FDR(False Discovery Rate) hesaplanır.

23 Farklı Gen Setleri için Sonuçlar

24 Teşekkürler


"Gene Set Enrichment Analysis (GSEA) Mehmet Emre Tuncer Refference:Daniel Gusenleitner" indir ppt

Benzer bir sunumlar


Google Reklamları