Sunum yükleniyor. Lütfen bekleyiniz

Sunum yükleniyor. Lütfen bekleyiniz

Yapısal Güvenilirlik Yrd. Doç. Dr. Engin Aktaş İMO İzmir Şubesi

Benzer bir sunumlar


... konulu sunumlar: "Yapısal Güvenilirlik Yrd. Doç. Dr. Engin Aktaş İMO İzmir Şubesi"— Sunum transkripti:

1 Yapısal Güvenilirlik Yrd. Doç. Dr. Engin Aktaş İMO İzmir Şubesi
13 Mayıs 2010

2 Trans-Alaska Petrol Boru Hattı
Mühendislik Palm Adası Genel olarak aşağıdaki durumlarda karar verme sanatı ve becerisidir Planlama Tasarım İmalat Bakım Rehabilitasyon Yıkım Golden Gate Hoover Barajı Trans-Alaska Petrol Boru Hattı

3 Mühendislerin Rakipleri
Doğal Felaketler

4 İnsan Ürünü Felaketler

5 Korozyon Yorulma Malzemeye Yönelik Problemler

6 I-35W Köprüsü, Minneapolis
Göçmeler Hyatt Regency Hoteli asma geçişlerin göçmesi Köprü ayağı oyulması 114 Ölü 1981 Tacoma Narrows Köprüsü I-35W Köprüsü, Minneapolis 1940 2007

7 Yapı Analizi Yapı Tasarımı Yapısal Güvenilirlik
Verilen bir yapı ve yükleme durumu için davranışın belirlenmesi. Yapı Tasarımı Davranışın izin verilen limitler içerisinde kalmasını sağlayacak şekilde yapıların boyutlandırılması. Yapısal Güvenilirlik Belirsizliklerin irdelenmesi Belirsizlik: Gözlemlenen değerler ile beklenen veya tasarımda kabul edilen değerler arasındaki farklılıklar

8 Klasik Güvenilirlik Teorisinin Gelişimi
İkinci Dünya Savaşı esnasında kullanılan ekipman ve sistemlerinin güvenirlik zaafiyetlerinin bulunması Örneğin savaş gemileri sadece %60 oranında ihtiyaç duyulduğunda göreve hazır halde bulunuyorlardı Aynı problem V1 ve V2 roketlerinin geliştirilmesinde de gözlemlenmişti, ilk denemelerin büyük bir kısmı başarısızlıkla sonuçlandı. Bu başarısızlıklar Güvenilirlik Teorisinin elemanlar ve sistemler için geliştirilmesinin önünü açtı.

9 Güvenilirlik Teorisi ilk olarak içerisinde birçok aynı durumlara
Güvenilirlik Teorisi ilk olarak içerisinde birçok aynı durumlara maruz kalan sistemler için geliştirilmiş; elektrik sistemleri (ampuller, elektrik düğmeleri,vb.) Daha sonraları görülen uygulamalar - Nükleer santrallerin donanımları (borular, valfler, pompalar, v.b.) - Kimyasal tesisler(borular, basınç kazanları, valfler, pompalar, v.b.) - Üretim tesisleri (pomplar, kompressörler, konveyörler vb.)

10 Teknik Ekipmanların Güvenilirlik Analizi
Bozulma Oranı Fonksiyonu z(t) İmalat hatalarından ötürü Zamana bağlı bozulmadan ötürü t

11 Yapılar ve yapı elemanları için klasik güvenilirlik analizlerinin
Yapılar ve yapı elemanları için klasik güvenilirlik analizlerinin kullanımı sınırlıdır çünkü Tüm yapı elemanları kendilerine has özellikler içerirler Göçme mekanizmaları sadece maruz kalınan bozunma ile değil aynı zamanda aşırı derece yük etkilerinin elemanların kapasitelerini geçmeleriyle de alakalıdır. Böyle sistemler için faklı bir yaklaşım izlenmelidir. Dayanımın ve yüklemenin zamana bağlı olarak modellenmesi gerekmektedir.

12 Klasik Güvenirlik Analizi Yapısal Güvenirlik Analizi
Bozulma anına kadar olan zaman için tutulan veriler Bozulma anına kadar geçen zaman T için dağılım modeli Yüklemeye ait karakteristik veriler Yüklemeye (S) ait dağılım modeli Malzemeye ait karakteristik veriler Dayanıma (R) ait dağılım modeli Dağılım parametrelerin kestirilmesi R ve S’ye ait dağılım paametrelerinin tayini Bozulma anına kadar geçecek süre ile ilgili istatistiklerin elde edilmesi R-S olasılıklarının tayini

13 Numerik olarak bu olasılığın hesaplanması
Yapısal Güvenilirlik? Yapısal Güvenilirlik, mühendislik hizmeti görmüş yapıların limit durumlarının aşılma olasılığının yapı kullanım ömrü için hesaplanması ile ilgilenir. Benzer yapılar üzerinde yapılan uzun soluklu olayın oluşma sıklığının belirlenmesi Numerik olarak bu olasılığın hesaplanması Veya subjektif olarak nümerik değerin belirlenmesi Uygulamada bu iki durumun kombinasyonu ile limit durum aşma olasılığı belirlenmektedir.

14 Riski de gözönünde bulunduran toplam maliyet
Yapısal Güvenilirliğin Getirileri Tasarım kriterlerinin rasyonel formülüzasyonu – Yük ve Taşıma Gücü Faktörleri Yöntemi (LRFD) gibi Karakteristik değer Risk tanımlaması Optimizasyon Yapı içerisinde maliyetin farklı dağıtılması Bağlantıların ana elemanlara nazaran daha ucuza maledilmesi Temel güvenlik katsayılarının temel maliyetinden dolayı düşük olması Riski de gözönünde bulunduran toplam maliyet $ S R Risk İlk Maliyet Göçme Maliyeti Kriter

15 Mevcut Yapıların değerlendirilmesi
Maliyetler yüzünden daha yüksek riskler kabul edilmekte Yapının ilk inşaası durumunda geçerli belirsizlikler kümesi Değerlendirme esnasında ise bir başka belirsizlikler kümesi Malzeme Şartnameleri Gerekli test sayılarının belirlenmesi Kabul şartlarının tanımlanması 15

16 Mühendislik Problemlerinde Belirsizlikler
İçsel Fiziksel Belirsizlikler (Tip Aleatory) Dünya üzerinde gözlenen olayların rastsal bir özellik göstermesinden kaynaklanır. Daha fazla data toplanması bu tip belirsizliği azaltmaz!!!!!! Model ve İstatistiksel Belirsizlikler (Tip 2 – Epistemic) Toplanan data miktarının artması belirsizliği azaltmaktadır.

17 Rassal Değişkenler Olasılık yoğunluk ve Eklenik Dağılım Fonksiyonları
Rassal değişken büyük harfle gösteriler :X Rassal değişkenin gerçekleşen değeri de küçük harfle gösterilir : x Sürekli Rassal Degişkenler Kesikli Rassal Degişkenler Eklenik Dağılım Fonksiyonu (E.D.F) Eklenik Dağılım Fonksiyonu (E.D.F) Olasılık Yoğunluk Fonksiyonu (O.Y.F) Olasılık Kütle Fonksiyonu (O.K.F)

18 Rassal Değişkenler Mühendislikte sıklıkla kullanılan dağılımlar
Normal: Rassal etkilerin toplamı Lognormal: Rassal etkilerin çarpımı Üssel: Bekleme süreleri Gamma: Bekleme sürelerin toplamı Beta: Fleksible modelleme fonksiyonu

19 Toplam Olasılık Teoremi ve Bayes Kuralı
Bayes Kuralı: Bir rassal değişkene ait olayların olasılıkları için önceki deneyimlerimize dayanarak yaptığımız tahminlari daha sonra yapılan gözlemlerin sonuçlarına göre düzeltmemize imkan sağlar. Art tahmin Ön tahmin Olabilirlik

20 Yapılar için Sınır Durumları
Nihai (Güvenlik) – Yapının tamamı veya bir kısmının göçmesi Moment Taşıma Kap. Aşımı Basınç altında betonun ezilmesi Korozyon Yangın Devrilme veya Kayma Dengesizlik Hizmet Verebilirlik – Normal hizmetin verilemememsi Aşırı Sehim Aşırı Titreşim Kalıcı Deformasyonlatr Çatlama Yorulma – Tekrarlanan kuvvetler etkisinde

21 Sınır Durum Aşılma Ölçütleri
Determinist (rassal olmayan) Emniyet Katsayısı (Elastik Gerilme Analizi) İzin verilen gerilme Yapı Tasarım Kodlarında verilir Malzeme Dayanımından elde edilir Emniyet Katsayısı belirlenmesi -Deneysel gözlemler -Elde edilen deneyimler -Ekonomik değerlendirmeler -(?) politik değerlendirmeler ışığında olur. Emniyet Katsayısı Şartnameyi düzenleyen komiteler tarafından belirlenir

22 Tarif edilen bir göçme durmu için
Determinist Yük Faktörü, l (Plastik Teoriye göre) Yapıya tesir eden yüklerin , yapının göçmesine sebebiyet verecek hale gelmesi sağlayan teorik faktör. Tarif edilen bir göçme durmu için İç iş denklemi External work function Applied Loads Sınır Durum Denklemi Emniyet Katsayısı ; servis yükleri altında eleman bazında Yük Faktörü; Göçme yükleri altında ve yapı boyutunda

23 1960’lı yıllarda beton tasarımı için geliştirilmeye başlandı.
Determinist Yük ve Taşıma Gücü Faktörleri (Kısmi Faktörler) - (limit state design) Kısmi faktörler 1960’lı yıllarda beton tasarımı için geliştirilmeye başlandı. Farklı yükleme durumlarına karşı farklı kısmi faktör tayin etmek mümkündür. Hareketli yük ve rüzgar yük etkileri için belirsizlikler daha yüksek olduğundan mantıklı bir seçimdir

24 Kısmi Olasılıksal Sınır Durumu Aşılma Ölçütü
– Dönüş Aralığı– Rüzgarlar, dalga yükseklikleri, fırtına, sel, hortum, deprem gibi doğa olayları RASSAL

25 Aşırı Yağışlar ve Sel

26 Fırtına

27 Hortum ve sonrası

28 Depremler Tsunami

29 Tropil Siklon Hurricane Lilli 2 Ekim 2002

30 Dönüş Aralığı bu rassal etkiyi gözönüne almada kullanılır.
Dönüş Aralığı: Birbirine takip eden iki istatistikçe bağımsız olay arasındaki ortalama veya beklenen zamandilimi. Yükler bir eşik durumunun aşılması ile ilişkilendirilir. Örnek olarak ; Rüzgar Hızı> 100 m/s Yapının tasarımı ise determinist yaklaşımla sonuçlandırılır.

31 Bernoulli trial sequence X>x durumunu ele alalım
t inci denemede olayın gerçekleşme olasılığı Olayın oluşmama olasılığı Olayın gerçekleşme olasılığı Denemeleri zaman aralıkları olarak değerlendirdiğinizde bir olayın ilk oluşması , ilk oluşma zamanı olarak addedilebilir. Ortalama oluşma ve dönüş aralığı o zaman or

32 Dönüş Aralığı tanımlanan zaman skalasına bağlıdır
Phenomenon Magnitude C A B D 2 4 6 8 Event count (X>x) 1 2 3 4 5 6 7 8 2 4 6 8 4 8 Dönüş Aralığı tanımlanan zaman skalasına bağlıdır Sadece eşik değerinin üzerindeki değerler gözönüne alınmıştır.

33 Örnek Bir yapı 50 yıllık dönüş aralığına sahip 60 km/h rüzgar hızına maruz ise Dönüş Aralığı Herhangi bir yıl içerisinde rüzgar hızının 60 km/h aşma olasılığı Dördüncü yılda 60 km/h aşma olasılığı 60 km/h eşik değerini 4 yıl içerisinde herhangi bir yıl, bir kez aşma olasılığı 60 km/h eşik değerini 4 yıl içerisinde herhangi bir yıl ilk kez aşma olasılığı

34 Dönüş Aralığı içersinde 60 km/h eşik değerinin aşılma olasılığı
Example (cntd) Alternatif bir çözüm ise Tüm tasarım ömrü düşünüldüğünde Dönüş Aralığı içersinde 60 km/h eşik değerinin aşılma olasılığı

35 Sınır Durum Aşımının Olasılıksal Ölçütü
Dönüş aralığı belirlenmiş bir eşik değerin aşılması ile ilgilidir. Peki bu yüklemenin zaman içerisinde herhangi bir an içermiş olduğu belirsizlik ile ilgili bir katkı sağlar mı? Güzel bir deneme olsa da yeterli değildir.……..

36 Bu data ile ne yapabiliriz?
Ofisler için gerçek gözlemlerden toplanmış verilerden elde edilen frekans histogramını gözden geçirelim Bu data ile ne yapabiliriz? Uygun bir olasılık dağılımı seçilir. (OYF) Yük Q, konvensiyonel yapı analizi teknikleri kullanılarak, yük etkisine S çevrilir. Elde ettiğimiz yük etkisinin dağılımı, fS() belirlenir.

37 Aynı şekilde dayanım içinde bir dağılım fR() belirlenir.
Akma dayanımına ait histogram ve uygun dağılım

38 Genel Güvenirlilik Problemi
Probability of failure at a time Ne yazık ki hayat dah karmaşıktır, zamanda bu tablonun içine girince Zaman içerisinde R S Genel limit durum fonksiyonu Pek kullanışlı olmasa da Gumbel (EV-I) veya Frechet (EV-II) dağılımları bu durumların gösterimine olanak tanırlar.

39 Temel Yapısal Güvenilirlik Problemi
Bir yapının güvenli olması için fR( ) R o zaman pf fS( ) S Genel terimler ile Limit Durum Fonksiyonu

40 Amacımız fRS altında Göçme bölgesindeki hacmi bulmaktır
Dayanımın marjinal dağılım fonksiyonu Yük etkisinin marjinal dağılım fonksiyonu Ortak (çift değişkenli) dağılım fonksiyonu Amacımız fRS altında Göçme bölgesindeki hacmi bulmaktır

41 Eğer R ve S birbirinden bağımsız ise
Göçme olasılığı,pf Eğer R ve S birbirinden bağımsız ise ve fS 1-FQ(x)

42 Eklenik Dağılım Fonksiyonu (edf)
Ayrıca şu şekilde yazılır

43

44 Özel Durum: Normal rastsal değişkenler
Limit Durum Fonksiyonu Normal dağılım R Normal dağılmış rastsal değişkenlerin toplanması (çıkarılması) sonucu Normal dağılım S Güvenilirlik İndisi

45 Z’nin dağılımı

46 Göçme Olasılığı ve Güvenirlilik İndisi

47 Yük etkisini öncelikle inceleyelim
Örnek Q Ahşap Kiriş L=5 m Yük etkisini öncelikle inceleyelim Standard sapmanın ortalama değeri oranı Kiriş ortasındaki moment O zaman Dayanım ise Normal dağılım tablosundan

48 Güvenlik Katsayısı ve Karakteristik Değer
Düşük olan bölgede tanımlanır Dağılım içerisindeki değerlerin %95’inin üzerinde olmasını sağlayacak değer Dayanım Normal Dağılıma sahip dayanım için

49 Yük Ortalamanın üstünde bir değer alır
Dağılım içerisindeki değerlerin %95’inin altında olmasını sağlayacak değer

50

51 Example S, Gumbel (EV-I) dağılımına sahip ve parametreleri de ms=60, Vs=0.2, yüzde 95’lik dilime denk gelen değer ise Gumbel Dağılımı için

52 Merkezi Emniyet Katsayısı
Karakteristik Emniyet Katsayısı Konvensiyonel emniyet katsayısına daha yakındır.

53 Failure probability pf versus safety factor l0

54 Failure probability pf versus safety factor l0

55 Genel Yapısal Güvenilirlik Problemi
Ortak dağılım fonksiyonu Eğer temel değişkenler birbirinde bağımsız ise

56 Genel Limit Durumu Denklemleri
Güvensiz Bölge Güvenli Bölge Sınır

57 Genel Yapısal Güvenilirlik Problemi Çözüm Yöntemleri
Nümerik İntegrasyon Monte Carlo Simülasyonu Birinci Mertebe İkinci Moment Metodu (FOSM)

58 Evrişim Tümlevinin Nümerik İntegrasyon ile Hesabı
Sadece sınırlı sayıda durum için kapalı form analitik çözüm mevcuttur. Genel olarak Evrişim Tümlevi nümerik olarak hesaplanmak durumundadır. Simpson’s kuralı gibi teknikler ile bu integrasyon hesaplanabilir Arzu edilen hassasiyete ulaşmak için Adım İntegrasyon Limitleri Rassal Değişken sayısı arttıkça çözüm için harcanan süre oldukça artmaktadır!!!!!!

59

60 İkinci Moment Yöntemleri
Lineer limit durum geçerli olduğunda

61 Lineer olmayan limit durum geçerli olduğunda
G(X) tasarım noktası olarak adlandırılan noktada Taylor Serisi Açılımının birinci derece terimleri ile linearize edilir.

62 Tasarım noktasını belirleyin
Limit durum fonksiyonuna normal vektörü belirleyin Güvenilirlik İndisi belirleyin Yeni tasarım noktası belirlenir Yukarıdaki adımlar güvenilirlik indisi arzu edilen seviyeye gelene kadar devam edilir.

63 Monte Carlo Simülasyonu
Rassal olarak N kez üretilen değişkenlerin değerleri limit durum fonksiyonunda yerine konularak göçme bölgesinde kalan durum sayısı toplam üretilen durum sayısına oranlanır.

64 Monte Carlo Simülasyonu
Ham Monte Carlo Öneme Göre Örnekleme Doğrultulu Örnekleme

65 Yapısal Sistemlerin Güvenilirliği
İki Uç Tip Yapısal Elemanlar Gevrek Eleman Gevrek eleman göçmesini belirtir sembol Sünek Eleman Sünek eleman göçmesini belirtir sembol

66 Yapısal Sistemlerin Güvenilirliği
Seri Sistemler Determinist bir yüklemeye maruz kalındığında

67 Yapısal Sistemlerin Güvenilirliği
Seri Sistemler Seri sistemler için genel karakteristik

68 Yapısal Sistemlerin Güvenilirliği
Paralel Sistemler Göçme tüm bileşenlerin göçmesi ile oluşur. Mükemmel sünek bileşenlerden oluşan bir sistem için

69 Yapısal Sistemlerin Güvenilirliği
Paralel Sistemler (Gevrek Bileşenler)

70 Güvenilirlik Esaslı Kod Tipleri
Seviye I Kodlar LRFD Seviye II Kodlar Tasarımcılar istatiksel data kullanarak hedef güvenilirliğe ulaştığını gösterir Seviye III Kodlar İstatiksel data kullanılarak tam olark hedef güvenilirlik seviyesine ulaşıldığı gösterilir. Seviye IV Kodlar istatiksel data kullanılır ve risk optimize edilir

71 Güvenilirlik Esaslı Kodlar
Yük ve Taşıma Gücü Faktörleri Kod formatı Nominal Taşıma Gücü Taşıma Gücü Faktörü Yük veye Yük Etkisi Yük Faktörü April 2, 2001

72 Güvenilirlik Esaslı LRFD Bazı Kodlar
AISC Çelik Yapılar için Şartname API Offshore Yapılar Tasarım Şartnamesi AASHTO Köprü Tasarım Şartnamesi ACI Yapı Kodu

73 LRFD’nin önemi nedir? Yükler ve onların değişkenlikleri konusunda bilgimiz malzeme hakkında bildiklerimizden çok daha sınırlıdır. LRFD sayesinde malzemeler daha uyum içerisinde kullanılabilir LRFD sıradışı yüklere karşı da tasarım yapmak için bir çerçeve sunmaktadır. LRFD kodların kalibrasyonu daha kolaydır. Sonuç olarak daha ekonomik tasarımlara ulaşmak mümkün olacaktır.

74 Yapısal Güvenilirlik ile ilgili Bilgisayar Programları
CALREL COSSAN (Computational Stochastic Structural Analysis INSPUD (Importance sampling Procedure Using Design Points) NESSUS (Numerical Evaluation of Stochastic Structures under Sress) PROBAN (Probabilistic Analysis Program) STRUREL (Structural Reliability Analysis)

75 Teşekkürler


"Yapısal Güvenilirlik Yrd. Doç. Dr. Engin Aktaş İMO İzmir Şubesi" indir ppt

Benzer bir sunumlar


Google Reklamları